Processor



Definition

The processor (or CPU, Central Processing
Unit) is a complex integrated circuit
characterized by very high integration and
equipped with the ability to interpret and

execute the instructions of a program.



Definition

»It is responsible for organizing the tasks
specified by the program and ensuring their
execution.

»It must also take into account information
external to the system and ensure its
processing.



Definition

» A microprocessor brings together ever more
complex functionalities over a few square
millimeters.

»Their power continues to increase and their
size decreases regularly, still respecting, for
the moment, the famous Moore's law.



Definition

»The processor executes each instruction very
quickly, in a few clock cycles.

»All computer activity is timed by a single
clock, so that all electronic circuits all work
together in synchronization.



Definition

»The frequency of this clock is expressed in
MHz (millions of cycles per second) or GHz
(billions of cycles per second).

»The processor executes program instructions
using a set of instructions.



Definition
»Example :

» A processor clocked at 2GHz will perform roughly
2 billion beats per second.

»For human, to count up to 2 billion, at a single
number per second

It takes approximately 63 years



Processor Characteristics

A processor is defined by:

ne number and width of its internal registers
ne clock speed expressed in MHz or GHz;

ne number of computing cores;

* Instruction Set Architecture;

* The number of internal cache memories;

* Manufacturing Process (Node Size).

* Thermal Desigh Power

* Power Efficiency



Instruction Set

»The first step in designing a microprocessor is
defining its instruction set.

»The set of instructions describes all of the
elementary operations that the microprocessor
can execute



Instruction Set

»The instructions found in each microprocessor are
classified into 4 groups:

» Data transfer

» Arithmetic operations
» Logical operations
»Sequence control



Instruction Set

Arithmetic Instructions:

* Operations: Addition, subtraction, multiplication, division,
and other arithmetic operations.

* Example Instruction: ADD, SUB, MUL, DIV

Logic Instructions:

* Operations: Bitwise operations, logical AND, OR, NOT, etc.
* Example Instruction: AND, OR, XOR, NOT



Instruction Set

Data Transfer Instructions:

* Operations: Move data between registers, memory, and |/O
devices.

* Example Instruction: MOV, LOAD, STORE

Control Transfer Instructions:

* Operations: Change the sequence of program execution,
alter program flow.

* Example Instruction: JUMP, BRANCH, CALL, RET



Instruction Set

Comparison Instructions:
* Operations: Perform comparisons between values.
* Example Instruction: CMP, TEST

Shift and Rotate Instructions:
* Operations: Shift and rotate bits within a data word.
* Example Instruction: SHL, SHR, ROL, ROR



Instruction Set

Stack Instructions:
e Operations: Manipulate the stack (push, pop).
* Example Instruction: PUSH, POP

Floating-Point Instructions:

* Operations: Perform arithmetic and logic operations on
floating-point numbers.

* Example Instruction: FADD, FSUB, FMUL, FDIV



Instruction Set

String Instructions:
* Operations: Process strings of characters or bytes.
* Example Instruction: MOVS, LODS, STOS

SIMD Instructions (Single Instruction, Multiple Data):

* Operations: Perform the same operation on multiple data
elements simultaneously.

* Example Instruction: MMX, SSE, AVX (used in multimedia
and parallel processing)



Instruction Set

1/0 Instructions:
* Operations: Input and output operations.
* Example Instruction: IN, OUT

Privileged Instructions:

* Operations: Special instructions that can only be executed in
privileged modes (e.g., supervisor or kernel mode).

* Example Instruction: HLT (halt), CLI (clear interrupt flag)



Instruction Set

for (int wvariable = startvalue; variable <= endvalue; ++variable)

{

statement

}

MOV CX, startvalue
Forl:
CMP CX, endvalue
JA Endforl
statement
INC CX
JMP Forl
Endforl:



Instruction Set

»Processors use tiny transistors to do basic
operations

»The processor actually works using a very limited
number of functions (logical AND, logical OR,
addition, etc.).

»It is impossible to put all the instructions on a
processor, because it is limited by the Node Size.



Instruction Set

»To put more instructions, we need a processor
with a very large surface area.

» Unfortunately, the processor is made of silicon
(platinum or gold bus) and silicon is expensive and
it gets very hot.

»The processor therefore processes complicated
information using simple instructions.



Processor family

CISC (Complex Instruction Set Computing):

* Characteristics:
* Large and complex instruction set.
* Instructions can perform multiple low-level operations.
e Variable-length instructions.
 Emphasizes hardware-based complexity.

* Examples:

» x86 architecture (Intel and AMD processors).
* Motorola 68k.



Processor family

RISC (Reduced Instruction Set Computing):

* Characteristics:
* Simplified instruction set with a focus on a small, highly optimized set of
instructions.
* Single-cycle execution for most instructions.
* Fixed-length instructions.
* Emphasizes compiler-based optimization.

* Examples:
 ARM architecture.
* MIPS architecture.
* PowerPC architecture.



Processor family

EPIC (Explicitly Parallel Instruction Computing):

* Characteristics:
* Developed by Intel and Hewlett-Packard.
e Similar to RISC but emphasizes parallel processing.
* Uses very long instruction word (VLIW) architecture.

* Examples:
* Intel Itanium (IA-64).



Processor family

VLIW (Very Long Instruction Word):

* Characteristics:
e Similar to EPIC architecture.
* [nstructions specify multiple operations that can be executed in parallel.

* Examples:
e Elbrus architecture.



Processor family

SIMD (Single Instruction, Multiple Data):

* Characteristics:
e Executes the same operation on multiple data elements simultaneously.

* Examples:
* Intel MMX, SSE, AVX instructions.



Processor family

DSP (Digital Signal Processor) Architecture:

* Characteristics:
* Optimized for processing digital signals.
e Often uses SIMD (Single Instruction, Multiple Data) instructions for
parallelism.

* Examples:
 Texas Instruments C6000 series.



Processor family

Hybrid Architectures:

* Some modern processors incorporate features from both CISC
and RISC architectures, blurring the lines between the traditional
distinctions.

»This explains why a program created for one type of processor
cannot run directly on a system with another type of processor,
unless the instructions are translated, called emulation.

»The term “emulator” is used to designate the program carrying
out this translation.



	Slide 1: Processor
	Slide 2: Definition
	Slide 3: Definition
	Slide 4: Definition
	Slide 5: Definition
	Slide 6: Definition
	Slide 7: Definition
	Slide 8: Processor Characteristics
	Slide 9: Instruction Set
	Slide 10: Instruction Set
	Slide 11: Instruction Set
	Slide 12: Instruction Set
	Slide 13: Instruction Set
	Slide 14: Instruction Set
	Slide 15: Instruction Set
	Slide 16: Instruction Set
	Slide 17: Instruction Set
	Slide 18: Instruction Set
	Slide 19: Instruction Set
	Slide 20: Processor family
	Slide 21: Processor family
	Slide 22: Processor family
	Slide 23: Processor family
	Slide 24: Processor family
	Slide 25: Processor family
	Slide 26: Processor family

