
MIPS Functions and the

Runtime Stack

Computer Architecture

Riad Bourbia

Computer Sciences department

Guelma University

[Adapted from slides of Dr. Mudawar, & El-maleh]

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 2

Presentation Outline

 Functions

 Function Call and Return

 The Stack Segment

 Preserving Registers

 Allocating a Local Array on the Stack

 Examples: Bubble Sort and Recursion

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 3

 A function (or a procedure) is a block of instructions that can be

called at several different points in the program

 Allows the programmer to focus on just one task at a time

 Allows code to be reused

 The function that initiates the call is known as the caller

 The function that receives the call is known as the callee

 When the callee finishes execution, control is transferred back to

the caller function.

 A function can receive parameters and return results

 The function parameters and results act as an interface between

a function and the rest of the program

Functions

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 4

Function Call and Return

 To execution a function, the caller does the following:

 Puts the parameters in a place that can be accessed by the callee

 Transfer control to the callee function

 To return from a function, the callee does the following:

 Puts the results in a place that can be accessed by the caller

 Return control to the caller, next to where the function call was made

 Registers are the fastest place to pass parameters and return

results. The MIPS architecture uses the following:

 $a0-$a3: four argument registers in which to pass parameters

 $v0-$v1: two value registers in which to pass function results

 $ra: return address register to return back to the caller

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 5

Function Call and Return Instructions

 JAL (Jump-and-Link) is used to call a function

 Save return address in $31 = PC+4 and jump to function

 Register $31 ($ra) is used by JAL as the return address

 JR (Jump Register) is used to return from a function

 Jump to instruction whose address is in register Rs (PC = Rs)

 JALR (Jump-and-Link Register)

 Save return address in Rd = PC+4, and

 Call function whose address is in register Rs (PC = Rs)

 Used to call functions whose addresses are known at runtime

Instruction Meaning Format

jal label $31 = PC+4, j Label Op=3 26-bit address

jr Rs PC = Rs Op=0 Rs 0 0 0 8

jalr Rd, Rs Rd = PC+4, PC = Rs Op=0 Rs 0 Rd 0 9

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 6

Parameters:

$a0 = Address of v[]

$a1 = k, and

Return address is in $ra

 Consider the following swap function (written in C)

 Translate this function to MIPS assembly language

void swap(int v[], int k)

{ int temp;

temp = v[k]

v[k] = v[k+1];

v[k+1] = temp;
}

swap:

sll $t0,$a1,2 # $t0=k*4

add $t0,$t0,$a0 # $t0=v+k*4

lw $t1,0($t0) # $t1=v[k]

lw $t2,4($t0) # $t2=v[k+1]

sw $t2,0($t0) # v[k]=$t2

sw $t1,4($t0) # v[k+1]=$t1

jr $ra # return

Example

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 7

Call / Return Sequence

 Suppose we call function swap as: swap(a,10)

 Pass address of array a and 10 as arguments

 Call the function swap saving return address in $31 = $ra

 Execute function swap

 Return control to the point of origin (return address)

swap:

sll $t0,$a1,2

add $t0,$t0,$a0

lw $t1,0($t0)

lw $t2,4($t0)

sw $t2,0($t0)

sw $t1,4($t0)

jr $ra

la $a0, a

li $a1, 10

jal swap

return here

. . .

Caller

addr a$a0=$4

10$a1=$5

ret addr$ra=$31

. . .

. . .

Registers

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 8

Register $31
is the return

address register

Details of JAL and JR

Address Instructions Assembly Language

00400020 lui $1, 0x1001 la $a0, a

00400024 ori $4, $1, 0

00400028 ori $5, $0, 10 ori $a1,$0,10

0040002C jal 0x10000f jal swap

00400030 . . . # return here

swap:

0040003C sll $8, $5, 2 sll $t0, $a1, 2

00400040 add $8, $8, $4 add $t0, $t0, $a0

00400044 lw $9, 0($8) lw $t1, 0($t0)

00400048 lw $10,4($8) lw $t2, 4($t0)

0040004C sw $10,0($8) sw $t2, 0($t0)

00400050 sw $9, 4($8) sw $t1, 4($t0)

00400054 jr $31 jr $ra

Pseudo-Direct

Addressing

PC = imm26<<2

0x10000f << 2

= 0x0040003C

0x00400030$31

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 9

Second Example

 Function tolower converts a

capital letter to lowercase

 If parameter ch is not a capital

letter then return ch

char tolower(char ch) {

if (ch>='A' && ch<='Z')

return (ch + 'a' - 'A');

else

return ch;

}

tolower: # $a0 = parameter ch

blt $a0, 'A', else # branch if $a0 < 'A'

bgt $a0, 'Z', else # branch if $a0 > 'Z'

addi $v0, $a0, 32 # 'a' – 'A' == 32

jr $ra # return to caller

else:

move $v0, $a0 # $v0 = ch

jr $ra # return to caller

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 10

Next . . .

 Functions

 Function Call and Return

 The Stack Segment

 Preserving Registers

 Allocating a Local Array on the Stack

 Examples: Bubble Sort and Recursion

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 11

The Stack Segment

 Every program has 3 segments

when loaded into memory:

 Text segment: stores machine

instructions

 Data segment: area used for static

and dynamic variables

 Stack segment: area that can be

allocated and freed by functions

 The program uses only logical

(virtual) addresses

 The actual (physical) addresses

are managed by the OS

Stack Segment

Heap Area

Static Area

0x00000000
Reserved

0x10000000

Text Segment

0x7fffffff

0x00400000

0x10040000

Stack Grows
Downwards

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 12

The Stack Segment (cont'd)

 The stack segment is used by functions for:

 Passing parameters that cannot fit in registers

 Allocating space for local variables

 Saving registers across function calls

 Implement recursive functions

 The stack segment is implemented via software:

 The Stack Pointer $sp = $29 (points to the top of stack)

 The Frame Pointer $fp = $30 (points to a stack frame)

 The stack pointer $sp is initialized to the base address of the

stack segment, just before a program starts execution

 The MARS tool initializes register $sp to 0x7fffeffc

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 13

Stack Frame

 Stack frame is an area of the stack containing …

 Saved arguments, registers, local arrays and variables (if any)

 Called also the activation frame

 Frames are pushed and popped by adjusting …

 Stack pointer $sp = $29 (and sometimes frame pointer $fp = $30)

 Decrement $sp to allocate stack frame, and increment to free

Frame f()

Stack

↓

stack grows

downwards

$fp

$sp
Frame f()

Stack

allocate stack

frame

Frame g()
$fp

$sp

f
c

a
ll

s
 g

g
re

tu
rn

s
Frame f()

Stack

↑

free stack

frame

$fp

$sp

Args for

nested calls

Saved

registers

Local

stack

variables

$sp

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 14

Steps for Function Call and Return

 To make a function call …

 Make sure that register $ra is saved before making a function call

 Pass arguments in registers $a0 thru $a3

 Pass additional arguments on the stack (if needed)

 Use the JAL instruction to make a function call (JAL modifies $ra)

 To return from a function …

 Place the function results in $v0 and $v1 (if any)

 Restore all registers that were saved upon function entry

 Load the register values that were saved on the stack (if any)

 Free the stack frame: $sp = $sp + N (stack frame = N bytes)

 Jump to the return address: jr $ra (return to caller)

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 15

Preserving Registers

 The MIPS software specifies which registers must be preserved

across a function call, and which ones are not

Must be Preserved Not preserved

Return address: $ra Argument registers: $a0 to $a3

Stack pointer: $sp Value registers: $v0 and $v1

Saved registers: $s0 to $s7 and $fp Temporary registers: $t0 to $t9

Stack above the stack pointer Stack below the stack pointer

 Caller saves register $ra before making a function call

 A callee function must preserve $sp, $s0 to $s7, and $fp.

 If needed, the caller can save argument registers $a0 to $a3.

However, the callee function is free to modify them.

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 16

Example on Preserving Register

 A function f calls g twice as shown below. We don't know what g

does, or which registers are used in g.

 We only know that function g receives two integer arguments

and returns one integer result. Translate f:

int f(int a, int b) {

int d = g(b, g(a, b));

return a + d;

}

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 17

Translating Function f

int f(int a, int b) {

int d = g(b, g(a, b)); return a + d;

}

f: addiu $sp, $sp, -12 # allocate frame = 12 bytes

sw $ra, 0($sp) # save $ra

sw $a0, 4($sp) # save a (caller-saved)

sw $a1, 8($sp) # save b (caller-saved)

jal g # call g(a,b)

lw $a0, 8($sp) # $a0 = b

move $a1, $v0 # $a1 = result of g(a,b)

jal g # call g(b, g(a,b))

lw $a0, 4($sp) # $a0 = a

addu $v0, $a0, $v0 # $v0 = a + d

lw $ra, 0($sp) # restore $ra

addiu $sp, $sp, 12 # free stack frame

jr $ra # return to caller

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 18

Next . . .

 Functions

 Function Call and Return

 The Stack Segment

 Preserving Registers

 Allocating a Local Array on the Stack

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 19

Allocating a Local Array on the Stack

 In some languages, an array can be

allocated on the stack

 The programmer (or compiler) must

allocate a stack frame with sufficient

space for the local array

void foo (int n) {

// allocate on the stack

int array[n];

// generate random array

random (array, n);

// print array

print (array, n);

}

Stack Frame

of Parent
$sp

Stack Frame

of Child
$sp

Saved $a0

Saved $ra

int array[n]

n × 4 bytes

Parent spsp

S
ta

c
k
 F

ra
m

e
 o

f
f
o
o

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 20

Translating Function foo
foo: # $a0 = n

sll $t0, $a0, 2 # $t0 = n*4 bytes

addiu $t0, $t0, 12 # $t0 = n*4 + 12 bytes

move $t1, $sp # $t1 = parent $sp

subu $sp, $sp, $t0 # allocate stack frame

sw $t1, 0($sp) # save parent $sp

sw $ra, 4($sp) # save $ra

sw $a0, 8($sp) # save n

move $a1, $a0 # $a1 = n

addiu $a0, $sp, 12 # $a0 = $sp + 12 = &array

jal random # call function random

addiu $a0, $sp, 12 # $a0 = $sp + 12 = &array

lw $a1, 8($sp) # $a1 = n

jal print # call function print

lw $ra, 4($sp) # restore $ra

lw $sp, 0($sp) # restore parent $sp

jr $ra # return to caller

MIPS Functions and the Runtime Stack COE 301 – KFUPM slide 21

Remarks on Function foo

 Function starts by computing its frame size: $t0 = n×4 + 12 bytes

 Local array is n×4 bytes and the saved registers are 12 bytes

 Allocates its own stack frame: $sp = $sp - $t0

 Address of local stack array becomes: $sp + 12

 Saves parent $sp and registers $ra and $a0 on the stack

 Function foo makes two calls to functions random and print

 Address of the stack array is passed in $a0 and n is passed in $a1

 Just before returning:

 Function foo restores the saved registers: parent $sp and $ra

 Stack frame is freed by restoring $sp: lw $sp, 0($sp)

