Other processor units

• Bus Interface Unit:

- Manages the communication between the CPU and the system's buses.
- Segmentation and Paging Units:
 - Segmentation involves dividing memory into segments
 - Paging involves dividing it into fixed-size pages.

• Decoding Unit:

- It decodes the binary instructions into actionable commands for the CPU.
- Anticipation Unit (Queue):
 - It predict and anticipate the next set of instructions, enabling efficient pre-processing and preparation for upcoming tasks.

Processor registers

General registers

Fast memories inside the processor (Handle data at high speed).

- The address of a register is associated with its name.
- Save intermediate results (avoids memory access).
- Are available to the programmer (Load, Store, Transfer, and Increment)

Processor registers

Address registers

- Program counter (PC): Keeps track of the memory address of the next instruction to be executed.
- Stack pointer register (Stack Pointer): Manages the memory stack, keeping track of the top of the stack.
- Index registers (SI/DI): Used for indexing operations in memory.
- >Address register: Holds a specific memory address

Processor registers

Instruction register: Stores the current instruction being executed.

Memory word register or data register: Holds data fetched from or to be written to memory.

Accumulator register: Holds the results of arithmetic and logic operations.

Status register (Program Status Word, PSW): Contains flags and status information about the processor state.

Steps for executing an instruction

>Finding the instruction to process

Decoding the instruction and finding the operand

► Instruction execution

➢One can characterize the power of a processor by the number of instructions it can process per second.

➤The CPI (Cycles Per Instruction) represents the average number of clock cycles needed for the execution of one instruction.

➤The MIPS (Millions of Instructions Per Second) represents the processing power of the microprocessor.

►<u>Example</u>:

Consider a machine with a clock frequency of 700MHz. It consists of 5 instruction classes with the following CPIs:

Class A	CPI =1	Compilors		Classes (%)				
Class B	CPI =2	Compilers	Α	В	C	D	E	
Class C	CPI =3	Compiler 1	10	20	10	30	30	
Class D	CPI =5	Compiler 2	20	15	15	30	20	
Class E	CPI =7	Compiler 3	5	10	15	40	30	

>What is the CPI of the code generated by each of the compilers?

>Which compiler produces code with the highest MIPS?

>Which compiler produces the most efficient code?

➤To enhance the performance of a processor:

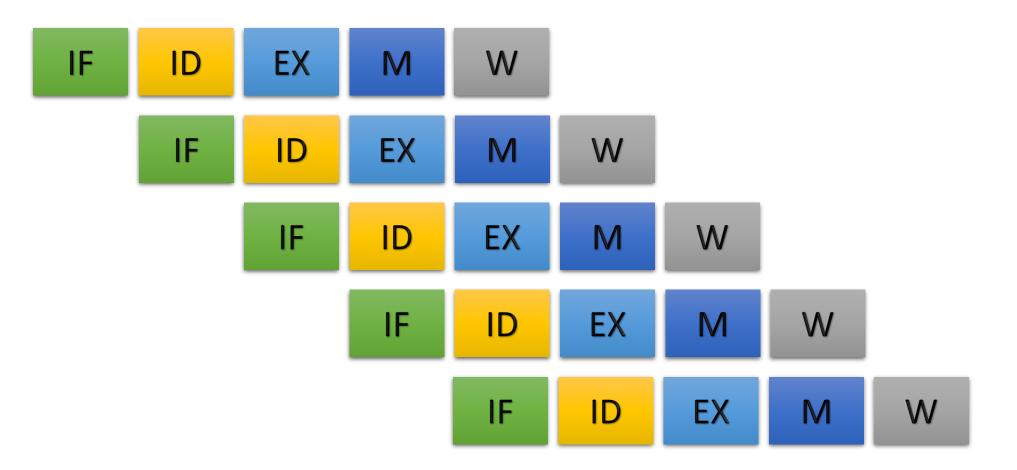
- Increase the clock frequency (hardware limitation)
- Decrease the CPI (selection of a suitable instruction set).
- ➤The collective improvements in processors aim to reduce the program's execution time.

Parallelism:

Parallelism involves simultaneously executing instructions related to the same program on different processors.

➢This translates to breaking down a program into multiple processes treated in parallel to gain execution time efficiency.

Pipeline architecture:

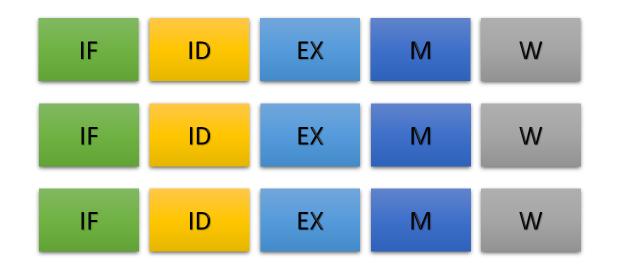

➢it is a design approach that divides the execution of instructions into a series of stages.

The pipeline allows different stages of multiple instructions to be processed simultaneously.

Example

- IF: Instruction Fetch from the cache;
- ID: Instruction Decode and Operand Fetch;
- EX: Instruction Execution;
- M: Load or Write to Memory;
- W: Write the calculated value to the registers.

Pipeline architecture


Superscalar architecture:

➢Another way to enhance performance is to execute multiple instructions simultaneously.

➢The superscalar approach involves equipping the processor with multiple processing units working in parallel.

Pipeline and superscalar architecture:

➤The principle is to execute instructions in a pipelined manner within each of the processing units working in parallel.

HyperThreading:

HyperThreading technology involves defining two logical processors within a physical processor.

➤The system recognizes two physical processors and behaves as a multitasking system by simultaneously processing two threads.

Multi-core:

A multi-core processor is simply a processor composed not of 1, but of 2 (or 4 or 8) computing units.