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Infinite Series

1.1 An introduction to series

A series is the result of adding a sequence of numbers together. While you may never have
thought of it this way, we deal with series all the time when we write expressions like 1

3
=

0.333....., since this means that

1
3
=

3
10

+
3

100
+

3
1000

+ .....

In general we are concerned with infinite series such as

∑
n≥1

an = a1 + a2 + a3 + ....an + ....

First though, we need to decide what it means to add an infinite sequence of numbers
together. Clearly we can’t just add the numbers together until we reach the end (like we do
with finite sums), because we won’t ever get to the end.
For any three numbers a, b and c, the following holds: a + (b + c) = (a + b) + c. This
property has the important theoretical consequence that you can add any three numbers
by choosing two, adding them, and then adding their sum to the third number. In other
words, finite sums can be rearranged and regrouped arbitrarily without changing the
sumbecause of the associative property.What’s just as bad is that the associative property
doesn’t work for infinite series, as we see in the following example: 1− 1+ 1− 1+ 1− 1+ ....
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If you group the terms into pairs, this series can be rewritten as

1− 1+ 1− 1+ 1− 1+ ..... = (1− 1)+ (1− 1)+ (1− 1)+ ..... = 0+ 0+ 0+ 0+ 0+ ..... = 0.

But, if you group the terms differently, you can also obtain

1− 1+ 1− 1+ 1− 1+ ..... = 1+(−1+ 1)+ (−1+ 1)+ .... = 1+ 0+ 0+ 0+ 0+ 0+ .... = 1.

We do not yet know if either of these calculations are valid. But what we do know is that they
cannot both be valid (because that would imply 0 = 1). Therefore it cannot be the case
than one can legally regroup or rearrange terms in an infinite series. In other words, the
associative property is invalid for infinite series in general.
Instead, we adopt the following limit-based definition.

Definition 1.1.1. If the sequence {sn} of partial sums defined by

sn = a1 + a2 + a3 + ....an =
k=n

∑
k=1

ak

has a unique and finite limit as n→ ∞, then we say that ∑
n≥1

an = lim
n→∞

sn, and in this case

we say that ∑
n≥1

an converges. Otherwise, ∑
n≥1

an diverges.

We begin with a particularly simple example.

Example 1.1.1. (Powers of 2). The series
∞

∑
n=1

1
2n converges to 1.

We begin by computing a few partial sums:

s1 =
1
2

=
1
2

= 1− 1
2

s2 =
1
2
+

1
4

=
3
4

= 1− 1
4
= 1− 1

22

s3 =
1
2
+

1
4
+

1
8

=
7
8

= 1− 1
8
= 1− 1

23

s4 =
1
2
+

1
4
+

1
8
+

1
16

=
15
16

= 1− 1
16

= 1− 1
23 ......,

then, sn = 1− 1
2n and then, sn+1 = sn +

1
2n+1 = 1− 1

2n +
1

2n+1 = 1− 1
2n+1 , so the formula

is correct for all valuesof n (this techniqueofproof is knownasmathematical induction). With
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this formula, we see that lim
n→∞

sn = 1, so
∞

∑
n=1

1
2n = s = 1.

Remark 1.1.1. There is an alternative, more geometri-
cal, way to see that this series converges to 1. Divide the
unit square in half, giving two squares of area 1/2. Now
divide one of these squares in half, giving two squares
of area 1/4. Now divide one of these in half, giving two
squares of area 1/16. If we continue forever, we will

subdivide the unit square (which has area 1) into squares of area 1/2, 1/4, 1/8, ...., verifying

that
∞

∑
n=1

1
2n = s = 1.

Remark 1.1.2. If sn does not tend to a unique limit finite or infinite, then series
∞

∑
n=1

an is said

to be oscillatory.

Properties 1.1.1. ´

• If we add or remove finitely many terms in a series, then a convergent series remains conver-

gent and a divergent series remains divergent.

• If wemultiply each termof the series by anon-zero constant, then a convergent series remains

convergent and a divergent series remains divergent.

• If
∞

∑
n=1

an and
∞

∑
n=1

bn are convergent, then
∞

∑
n=1

an ±
∞

∑
n=1

bn =
∞

∑
n=1

(an ± bn) is also convergent.

• Unless an and bn are of the same sign, the divergence of the two series
∞

∑
n=1

an and
∞

∑
n=1

bn

does not imply the divergence of the series
∞

∑
n=1

(an + bn) as well shown in the example of

an = (−1)n+1 and bn = (−1)n.

• The set of numerical series is a vector space on C, that of convergent series is a subspace.

1.1.1 A necessary condition for convergence

Theorem 1.1.1. If∑ an is convergent, then lim
n→∞

an = 0.

University of Guelma Department of Mathematics BENRABAH. A
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Proof. . Since we are assuming that ∑ an converges, then an = sn − sn−1 and lim
n→∞

sn =

lim
n→∞

sn−1 = s. therefore

lim
n→∞

an = lim
n→∞

sn − lim
n→∞

sn−1 = s− s = 0.

�

1.1.2 The Test for Divergence

If lim
n→∞

an 6= 0 then ∑ an diverges.

Remark 1.1.3. It is important to remember that the converse to the Test for Divergence is
false, i.e., even if the terms of a series tend to 0, the series may still diverge.

Example 1.1.2. (The Harmonic Series). The series ∑
1
n

diverges. Indeed

∑
n≥1

1
n

= 1 +
1
2
+

1
3
+

1
4︸ ︷︷ ︸

2× 1
4=

1
2

+
1
5
+

1
6
+

1
7
+

1
8︸ ︷︷ ︸

4× 1
8=

1
2

+
1
9
+

1
10

+
1
11

+
1

12
+

1
13

+
1

14
+

1
15

+
1

16︸ ︷︷ ︸
8× 1

16=
1
2

+..... ≥ 1 +
1
2
+

1
2
+

1
2
+ .....

and therefore the series diverges.

Example 1.1.3. (Harmonic series) Indeed, the harmonic series is just such a series: 1
n
→ 0

as n→ ∞, but ∑
1
n

diverges.

Example 1.1.4. If, an = ln
(

1 +
1
n

)
. Then lim

n→∞
an = 0, but

University of Guelma Department of Mathematics BENRABAH. A
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lim
n→∞

sn = lim
n→∞

n

∑
k=1

ak = lim
n→∞

n

∑
k=1

(ln(k + 1)− ln k)

= lim
n→∞

[(ln 2− ln 1) + (ln 3− ln 2) + (ln 4− ln 2) + ... + (ln(n + 1)− ln n)]

= lim
n→∞

ln(n + 1) = ∞.

Our goal in this chapter is to develop several tests which we can apply to a wide range of
series. Our list of tests will grow to include

1. The Test for Divergence (already given)

2. The Integral Test

3. The p-Series Test

4. The Comparison Test

5. The Limit Comparison Test

6. The Ratio Test(d’Alembert test)

7. Cauchy’s nth Root Test(or The root test)

8. Raabe’s Test

9. The Absolute Convergence Theorem

10. The Alternating Series Test

Remark 1.1.4. It is important to realize that each test has distinct strengths and weaknesses,
so if one test is inconclusive, you need to push onward and try more tests until you find one
that can handle the series in question.

1.1.3 Geometric series

One of the most important types of infinite series are geometric series. A geometric series
is simply the sum of a geometric sequence. Geometric series are some of the only series
for which we can not only determine convergence and divergence easily, but also find their
sums, if they converge:

University of Guelma Department of Mathematics BENRABAH. A
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Definition 1.1.2. Geometric Series. The geometric series

a + ar + ar2 + ar3 + ... + arn + ... =
∞

∑
n=0

arn,

converges to a
1− r

if |r| < 1, and diverges otherwise.

An easy way to remember this result is

geometric series ∑ =
first term

1− ratio between terms .

Example 1.1.5. Compute

• 12 + 4 + 4/3 + 4/9 + 4/27.....

•
∞

∑
n=6

(−1)n 2n+3

3n

•
∞

∑
n=1

2n+1 + 9n/2

5n

• Use geometric series to approximate the decimal expansion of 1/48.

Proof.

• The first term is 12 and the ratio between terms is 1/3, so

12 + 4 + 4/3 + 4/9 + 4/27.... =
first term

1− ratio between terms =
12

1− 1/3
= 18.

• This series is geometric with common ratio

r =
an+1

an
=

(−1)n+1 2n+4

3n+1

(−1)n 2n+3

3n

= −2/3,

and so it converges because |−2/3| < 1. Its sum is
∞

∑
n=6

(−1)n 2n+3

3n =
29/36

1 + 2/3
=

512/1215.

• We break this series into two

∞

∑
n=1

2n+1 + 9n/2

5n =
∞

∑
n=1

2n+1

5n +
∞

∑
n=1

9n/2

5n .

University of Guelma Department of Mathematics BENRABAH. A



1.1 An introduction to series 9

The first of these series has common ratio 2/5, so it converges. To analyze the second
series, note that 9n/2 = 3n, so this series has common ratio 3/5. Since both series
converge, we may proceed with the addition:

∞

∑
n=1

2n+1 + 9n/2

5n =
22/5

1− 2/5
+

3/5
1− 3/5

= 4/3 + 3/2 = 17/6.

• We express 1/48 as 1/50 times a fraction of the form 1/(1− r) : 1/48 = 1/(50− 2) =

(1/50)
1

1− 2/50
. Nowwe can expand the fraction on the righthand side as a geometric

series,
1/48 = (1/50)

(
1 + 2/50 + (2/50)2 + (2/50)3 + ....

)
Using the first two terms of this series, we obtain the approximation 1/48 ≈ 0.02(1 +

0.02) = 0.0204.

�

Example 1.1.6. (Repeating Decimals).Write the repeating decimal 3.10454545.... as a frac-
tion in lowest terms.
Notice that we can rewrite this decimal as the sum of infinitely many fractions as follows:

3.10454545.... = 3.10 + 0.0045 + 0.000045 + 0.00000045 + .....

=
31
10

+
45
104 +

45
106 +

45
108 + ...

=
31
10

+ 45 ∑
1

102n

=
31
10

+
45

1002
1

1− 1/100
= 683/220.

1.1.4 A necessary and sufficient condition for convergence

Theorem 1.1.2. Let (an) be a sequence in R. The series∑ an is convergent if and only if

∀ε > 0, ∃n0 ∈N such that p, q ∈N and p > q > n0, then
∣∣∣∣∣ n=p

∑
n=q+1

an

∣∣∣∣∣ ≤ ε.

Remark 1.1.5. This theorem is not very simple to handle, nevertheless its importance comes
from the fact that it constitutes the only known necessary and sufficient condition which

University of Guelma Department of Mathematics BENRABAH. A
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applies generally to any convergent series. It is the last method, when no simpler method is
not applicable.

Example 1.1.7. (The Harmonic Series). The series ∑
1
n

diverges. We have

2p

∑
n=p+1

1
n
=

1
p + 1

+
1

p + 2
+

1
p + 3

+ .... +
1

2p
> p

1
2p

,

therefore
2p

∑
n=p+1

1
n

>
1
2

and we cannot realize
∣∣∣∣∣ 2p

∑
n=p+1

1
n

∣∣∣∣∣ < ε if ε <
1
2

. And therefore the

series diverges.

1.2 Positive Term Series

Definition 1.2.1. If all the terms after some finitely many terms of an infinite series are
positive then such a series is called positive term series. e.g.

−7 + 8− 3− 5 + 9− 32 + 2 + 3 + 5 + 34 + ....︸ ︷︷ ︸
positive terms

is a positive term series.

Theorem1.2.1. Suppose an ≥ 0 ∀n. Then∑ an converges if and only if (sn)n is bounded

above.

Example 1.2.1. Let ∑
n≥1

1
n2 . Since the series is positive and, ∀n ≥ 1,

sn =
k=n

∑
k=1

1
k2 = 1 +

k=n

∑
k=2

1
k2 ≤ 1 +

k=n

∑
k=2

1
k(k− 1)

= 1 +
k=n−1

∑
k=1

1
k(k + 1)

= 1 +
k=n−1

∑
k=1

(
1
k
− 1

k + 1

)
= 1 +

(
1− 1

n

)
= 2−

(
1− 1

n

)
≤ 2.

This shows that (sn)n is bounded above, so ∑
n≥1

1
n2 is convergent.

1.2.1 The integral test

In this subsection we discuss a very simple, but powerful, idea: in order to prove that certain
series converge or diverge, we may compare them to integrals.

University of Guelma Department of Mathematics BENRABAH. A
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Definition 1.2.2. In general, if we have a function f defined from x = a to x = ∞, we define

∫ ∞

a
f (x)dx = lim

b→∞

∫ b

a
f (x)dx,

and we say that this improper integral converges if the limit converges, and that it diverges if
the limit diverges.

Theorem 1.2.2. Suppose that f is a positive, decreasing, and continuous function, and

that an = f (n). Then ∑
n≥1

an converges if and only if the improper integral
∫ ∞

1
f (x)dx

converges.

Proof. Suppose we have a function f which is positive and decreasing, such that f (n) = an

for n = 0, 1, 2, 3, ... Consider the above picture, which shows the graph of f in red. It is clear
from the picture that

green area ≤
∫ ∞

0
f (x)dx ≤ green area + blue area. (1.2.1)

Now let’s figure the area of the green shaded region. This can be subdivided into rectangles
of width 1 by drawing vertical line segments from the x−axis up to the top of the green area
at each integer. If you do this, you will find that (by reading the heights of the rectangles off
of the scale on the y−axis)

• the area of the first green rectangle is its height times its width, i.e. is a1.1 = a1,

• the area of the second green rectangle is a2.1 = a2,

University of Guelma Department of Mathematics BENRABAH. A
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• the area of the third green rectangle is a3.1 = a3, etc.

Thus the total green area is a1 + a2 + a3 + .... =
∞

∑
n=1

an.

Now let’s figure the total area of the blue and green regions. As with just the green regions,
the combined blue and green regions can be divided into rectangles of width 1. This time,
however,

• the area of the left-most rectangle (whose bottom part is green but whose top part is
blue) is its height times its width, i.e. is a0.1 = a0,

• the area of the second rectangle is a1.1 = a1,

• the area of the third rectangle is a2.1 = a2, etc.

Thus the total combined blue and green area is a0 + a1 + a2 + a3 + .... =
∞

∑
n=0

an.

Plugging these computations into equation (1.2.1), we see that

∞

∑
n=1

an ≤
∫ ∞

0
f (x)dx ≤

∞

∑
n=0

an.

From this inequality we can prove the theorem. First, assume that
∫ ∞

0
f (x)dx converges.

This means that the green shaded area, being less than the finite number
∫ ∞

0
f (x)dx, is also

finite, i.e.
∞

∑
n=1

an converges. Since the starting index of a series is irrelevant to whether or not

it converges,
∞

∑
n=0

an converges as well.

Now assume that
∫ ∞

0
f (x)dx diverges, i.e. that the area under the red function is infinite.

This means that the combined green and blue shaded area, being greater than the area under

the function f (x) (which is
∫ ∞

0
f (x)dx), must also be infinite. Therefore

∞

∑
n=0

an diverges.

This completes the proof of the Integral Test. �

Example 1.2.2. Does the series ∑
n≥1

1
n2 + 1

converge or diverge?

We began the section by considering ∑ 1/n and ∑ 1/n2. What about ∑ 1/np for other
values of p? Wecanevaluate the integral of 1/xp, so the Integral Test canbeused todetermine
which of these series converge. Because series of this form occur so often, we record this fact
as its own test.

University of Guelma Department of Mathematics BENRABAH. A
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1.2.2 The p-Series Test

Theorem 1.2.3. The series∑ 1/np converges if and only if p > 1.

Proof. When p = 1, we already know that the series diverges (1/n is the Harmonic
series). For other values of p, we simply integrate the improper integral from the Integral
Test:

∫ ∞

1

1
xp dx = lim

b→∞

∫ b

1

1
xp dx

= lim
b→∞

(
b1−p

1− p

)
− 1

1− p

=


1

1− p
, if p > 1

∞, if p ≤ 1.

�

The Integral Test Remainder Estimates. Suppose that f is a positive, decreasing, and
continuous function, and that an = f (n). Then the error in the nth partial sum of ∑ an is
bounded by an improper integral:∣∣∣∣∣sn −

∞

∑
n=1

an

∣∣∣∣∣ ≤
∫ ∞

n
f (x)dx.

The proof of the Integral Test Remainder Estimate is almost identical to the proof of the
Integral Test itself, so we content ourselves with an example.

Example 1.2.3. Bound the error in using the fourth partial sum s4 to approximate ∑
n≥1

1
n2 .

The error in this case is the difference between sn and the true value of the series:

Error =

∣∣∣∣∣s4 −
∞

∑
n=1

an

∣∣∣∣∣ =
∣∣∣∣∣sn −

∞

∑
n=1

an

∣∣∣∣∣ ≤
∫ ∞

4

1
x2 dx = lim

b→∞

∫ b

4

1
x2 dx =

1
4

.

This is not a very good bound. As wementioned earlier, Euler approximated the value

of this series towithin 17 decimal places. Howmany termswouldweneed to take to get

the upper boundon the error from the Integral Test Remainder Estimates under 10−17?

University of Guelma Department of Mathematics BENRABAH. A



1.2 Positive Term Series 14

1.2.3 The Comparison Test

Theorem 1.2.4. Suppose that 0 ≤ an ≤ bn for sufficiently large n.

• If∑ an diverges, then∑ bn also diverges.

• If∑ bn converges, then∑ an also converges.

Proof. Let sn denote the nth partial number of an and tn denote the nth partial sum of
bn, so

sn = a1 + a2 + ... + an, tn = b1 + b2 + ... + bn.

From our hypotheses (that 0 ≤ an ≤ bn for all n), we know that sn ≤ tn for all n.

• First suppose that ∑ bn converges, which implies by our definitions that tn → ∑ bn

as n → ∞. The sequence sn is nonnegative and monotonically increasing because
sn+1 − sn = an ≥ 0 for all n, and

0 ≤ sn ≤ tn ≤∑ bn

so the sequence sn has a limit by the Monotone Convergence Theorem that the series

∑ an converges.

• Now suppose that ∑ an diverges. Because the terms an are nonnegative, the only way that

∑ an can diverge is if sn → ∞ as n → ∞. Therefore the larger partial sums tn must
also tend to ∞ as n→ ∞, so the series ∑ bn diverges as well.

�

Remark 1.2.1. In practice, we will almost always compare with a geometric series or a
p−series.

Example 1.2.4. • Show that the series
∞

∑
2

1
n2 − 1

converges

• Show that the series
∞

∑
1

n√
n4 + 7

diverges.

• Does the series
∞

∑
1

n ln n√
(n + 3)5

converge or diverge?

Solution:
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1.2 Positive Term Series 15

• Because n2 − 1 ≥ (n− 1)2, we have that

∞

∑
2

1
n2 − 1

=
1
3
+

1
8
+

1
15

+ .... ≤ 1
1
+

1
4
+

1
9
+ .... =

∞

∑
1

1
n2 ,

so the series converges by comparison to 1
n2 .

• We have n√
n4 + 7

≥ n√
n4 + 7n4

=
1√
8n

, so the series we are interested in diverges
by comparison to the harmonic series.

• As we know, ln n ≤ n1/4 for sufficiently large n and (n + 3)5 ≥ n5, we can use the
comparison

n ln n√
(n + 3)5

≤ n.n1/4

n5/2 =
1

n5/4 .

Because ∑
1

n5/4 is a convergent p−series,
∞

∑
1

n ln n√
(n + 3)5

converges by the Compari-

son Test.

If a series converges by the Comparison Test, then we have the following remainder estimate
The Comparison Test Remainder Estimate. Let ∑ an and ∑ bn be series with positive

terms such that an ≤ bn for n ≥ N. Then for n ≥ N, the error in the nth partial sum of

∑ an, sn, is given by ∣∣∣∣∣sn −
∞

∑
1

an

∣∣∣∣∣ ≤ bn+1 + bn+2 + bn+3 + .......

Example 1.2.5. How many terms are needed to approximate
∞

∑
1

1
2n + n

to within 1
10

?

1.2.4 The Limit Comparison Test

Theorem 1.2.5. Let∑ an and∑ bn be two positive term series such that

lim
n→∞

an

bn
= L,

then

• if L is non-zero and finite, then∑ an and∑ bn converge or diverge together,
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1.2 Positive Term Series 16

• if L = 0, then∑ an is convergent if∑ bn is convergent,

• if L = ∞, then∑ an is divergent if∑ bn is divergent.

Proof. �

Example 1.2.6. Examine the convergence of the series:

(a) ∑
n≥1

√
n2 − 1

n4 + 1
, (b) ∑

n≥1

√
n2 + 1− n, (c) 1 + 1/22 + 22/33 + 33/44 + ...

1.2.5 The Ratio Test (D’ALEMBERT Ratio Test)

There are a great many series for which the above tests are not ideally suited, for example,
the series

∞

∑
1

4n

n!
.

Integrating the terms of this series would be difficult. We could try a comparison, but again,
the solution is not particular obvious. Instead, the simplest approach to such a series is the
following test due to Jean le Rond d’Alembert (1717–1783).

Theorem1.2.6. Suppose that∑ an is a serieswithpositive termsand let L = lim
n→∞

an+1/an.

• If L < 1 then∑ an converges.

• If L > 1 then∑ an diverges.

• If L = 1 or the limit does not exist then the Ratio Test is inconclusive.

Proof. You should think of the Ratio Test as a generalization of the Geometric Series Test.
For example, if (an) = (arn is a geometric sequence then lim

n→∞
an+1/an = r, and we know

these series converge if and only if |r| < 1.

If L > 1 then the sequence an is increasing (for sufficiently large n), and therefore the series
diverges by the Test for Divergence.
Now suppose that L < 1. Choose a number r sandwiched between L and 1 : L < r < 1.

Because an+1/an → L, there is some integer N such that 0 ≤ an+1/an ≤ r. For all n ≥ N.

Set a = aN. Then we have
aN+1 ≤ raN = ar,
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1.2 Positive Term Series 17

and
aN+2 ≤ raN+1 < ar2,

and in general, aN+k < ark. Therefore for sufficiently large n (namely, n ≥ N), the terms of
the series ∑ an are bounded by the terms of a convergent geometric series (since 0 < r < 1),
and so ∑ an converges by the Comparison Test. �

Example 1.2.7. 1. Does the series
∞

∑
1

4n

n!
converge or diverge?

2. Does the series
∞

∑
1

n2

2n converge or diverge?

3. Does the series
∞

∑
1

10n

n22n+1 converge or diverge?

Remark 1.2.2. • It is important to note that the Ratio Test is always inconclusive for
series of the form ∑

polynomial
polynomial . As an example, we consider the harmonic series

∑ 1/n and ∑ 1/n2.

• When it is a good idea to use the Ratio Test: The Ratio Test is likely to work well for a
series whose terms contain only things that are multiplied and divided, and for series
whose terms contain expressions like 2n, 3n, cn, nn, n!, etc.

1.2.6 Cauchy’s nth Root Test(or The root test)

Theorem 1.2.7. If∑ an is a positive term series such that

lim
n→∞

(an)
1/n = L,
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1.2 Positive Term Series 18

then

• If L < 1 then∑ an converges.

• If L > 1 then∑ an diverges.

• If L = 1 or the limit does not exist then the Ratio Test is inconclusive.

Example 1.2.8. Examine the convergence of the following series:

• ∑
n≥1

(n− ln n)n

2nnn ,

• ∑
n≥1

3(−1)n−n,

• ∑
n≥1

(
n

n + 1

)n2

.

Remark 1.2.3. Let ∑ an be a positive term series

1. If lim
n→∞

an+1/an exists, then lim
n→∞

a1/n
n exists also, and we have

lim
n→∞

an+1/an = lim
n→∞

a1/n
n ,

2. The reciprocal of (1) is false, in general.

1.2.7 Raabe’s Test

Theorem 1.2.8. If∑ an is a positive term series such that

lim
n→∞

n
(

an

an+1
− 1
)
= L,

then

• ∑ an is convergent if L > 1,

• ∑ an is divergent if L < 1,

• Test fails if L = 1.

Remark 1.2.4. The Raabe’s test is used when D’Alembert’s ratio test is failed and the ratio
an/an+1 does not contains the number e.
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Example 1.2.9. Examine the convergence of the series:

1 +
3
7
+

3.6
7.10

+
3.6.9

7.10.13
+

3.6.9.12
7.10.13.16

+ .....

In the case where the limit L of the Raabe’s Test is equal to 1, a refinement is still possible:

Theorem 1.2.9. If∑ an is a positive term series such that

lim
n→∞

[
n
(

an

an+1
− 1
)
− 1
]

ln n = L,

then

• ∑ an is convergent if L > 1,

• ∑ an is divergent if L < 1,

• Test fails if L = 1.

Proposition 1.2.1. (Bertrand’ series)1

Let α and β two real numbers. The series ∑
n≥2

1
nα(ln n)β

converges if and only if (α > 1),

or (α = 1 and β > 1).

Proof.

1. If α > 1, there exists a real constant such that 1 < γ < α. Then

nγ 1
nα(ln n)β

=
1

nα−γ(ln n)β
→n→∞ 0,

since α− γ > 0. then, from Riemann’s rule the series converges.

2. If α < 1. With the same manner, we have

n
1

nα(ln n)β
=

1
nα−1(ln n)β

→n→∞ ∞,

so the series diverges.

3. assume that α = 1.
1Joseph Bertrand (1822-1900), French mathematician
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a If β ≤ 0, for all n ≥ 3 we get
1

n(ln n)β
≥ 1

n
,

thus, from the comparaison test the series ∑
n≥2

1
n(ln n)β

diverges.

b If β > 0. The function x 7→ f (x) =
1

x(ln x)β
is positive and decreasing on [2,+∞[,

thus by using integral test (see theorem 1.2.2).

(i) If β 6= 1, we have

∫ x

2

dt
t(ln t)β

=

[
(ln t)1−β

1− β

]x

2
=

1
1− β

(
(ln x)1−β − (ln 2)1−β

)
,

we deduce that

lim
x→∞

∫ x

2

dt
t(ln t)β

=


(ln 2)1−β

1− β
, if β > 1

+∞, if 0 < β < 1.

Then, the series converges if β > 1, and diverges if 0 < β < 1.

(ii) Now, if β = 1.

∫ x

2

dt
t(ln t)

= ln(ln(x))− ln(ln(2)) −→x→∞= ∞.

Thus, the series ∑
n≥2

1
n(ln n)

diverges.

�

1.3 Alternating Series

We have focused almost exclusively on series with positive terms up to this point. In this
short section we begin to delve into series with both positive and negative terms, presenting
a test which works for many series whose terms alternate in sign.

Definition1.3.1. A serieswith terms alternately positive andnegative is called an alternating
series. For example, 1− 1/2 + 1/3− 1/4 + 1/5− 1/6 + 1/7− ........... The general form
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1.3 Alternating Series 21

of alternating series is given by

a1 − a2 + a3 − a4 + a5 − a6 + a7 − a8 + ........ = ∑
n≥1

(−1)n+1an, (an > 0)

or
−a1 + a2 − a3 + a4 − a5 + a6 − a7 + a8 − ........ = ∑

n≥1
(−1)nan, (an > 0)

1.3.1 The Alternating Series Test

Theorem 1.3.1. Suppose that the sequence (an) satisfies the three conditions:

1. an ≥ 0 for sufficiently large n,

2. an+1 ≤ an for sufficiently large n (i.e., an is monotonically decreasing), and

3. an → 0 as n→ ∞.

Then the alternating series ∑
n≥1

(−1)n+1an converges.

An explanation of why the Alternating Series Test works:

We are going for simplicity:

1. that the starting index of the series is n = 0, and

2. that the terms a0, a2, a4, ..... are all positive and the terms a1, a3, a5, ..... are all negative.

Now for each n ≥ 0, let Sn = a0 + a1 + ....+ an be the nth partial sum. Consider the following
picture which plots Sn vertically and n horizontally (an explanation of the picture is below)

University of Guelma Department of Mathematics BENRABAH. A
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The partial sums are plotted with the red and blue points (the Sn where n is even are the red
points and the Sn where n is odd are the blue points). Notice that to get from one partial
sum to the next, i.e. to get from Sn to Sn+1, you have to add an+1. This is indicated by the
green arrows. Now we will use the hypotheses of the Alternating Series Test:

• By hypothesis (1), the an alternate in sign. In our case, all the even an are negative and
all the oddanarepositive. Therefore, whenever n is odd, Sn is below theprevious partial
sum, and whenever n is even, Sn is above the previous partial sum. This makes each
blue dot lower than each preceding red dot, and each red dot above each preceding
blue dot.

• By hypothesis (3), |an| ≥ |an+1|. Since |an| is the length of the nth green arrow, we are
assured by hypothesis (3) that the green arrows are getting shorter as n increases. Thus
the red and blue dots are getting closer and closer together.

• By hypothesis (2), lim
n→∞
|an| = 0. This means that since |an| is the length of the green

arrows, the length of these green arrows is going to zero as n increases. Thus the red
and blue dots are both approaching the same height, so they have the same limit. This
limit L is the limit of the partial sums, so by definition the infinite series converges to
L.

This concludes the explanation of why the Alternating Series Test works.

Example 1.3.1. Does the series ∑
n≥1

(−1)n+1 2n + 3
3n + 4

converge or diverge?

This series does alternate in sign, and 2n + 3
3n + 4

is decreasing, but 2n + 3
3n + 4

→ 2/3 6= 0, so the
series diverges by the Test for Divergence.

Remark1.3.1. Note that in the solutionof Example 1.3.1, wedidnot appeal to theAlternating
Series Test, but instead used the Test for Divergence. The Alternating Series Test never shows
that series diverge.

1.3.2 Absolute and Conditional Convergence

Definition 1.3.2. A series ∑
n≥1

an is said to be absolutely convergent if the series ∑
n≥1
|an| is

convergent.
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Definition 1.3.3. If ∑
n≥1

an is converges but ∑
n≥1
|an| diverges, then the series ∑

n≥1
an is called

conditionally convergent.

Example 1.3.2. • Test the convergence of the series: 5− 10/3 + 20/9− 40/27 + .....

Test the convergence and absolute convergence of the series:

• 1
1× 3

− 1
2× 4

+
1

3× 5
− 1

4× 6
+ ....

• ∑
n≥1

(−1)n−1
√

n
.

Remark 1.3.2. • Every absolutely convergent series is a convergent series but the con-
verse is not true.

• If ∑
n≥1

an is a series of positive terms, then ∑
n≥1
|an| = ∑

n≥1
an. Therefor the concepts of

convergence and absolutely convergence are the same. Thus, any convergent series
of positive terms is also absolutely convergent.

The proof of the Alternating Series Test implies the following very simple bound on
remainders of these series.

Theorem 1.3.2. The Alternating Series Remainder Estimates.

Suppose that the sequence (bn) satisfies the three conditions of the Alternating Series Test:

1. bn ≥ 0 for sufficiently large n,

2. bn+1 ≤ bn for sufficiently large n (i.e., bn is monotonically decreasing), and

3. bn → 0 as n→ ∞.

Then if n ≥ N, the error in the nth partial sum of ∑
n≥1

(−1)n+1bn is bounded by bn+1

∣∣∣∣∣sn − ∑
n≥1

(−1)n+1bn

∣∣∣∣∣ ≤ bn+1.

Example 1.3.3. How many terms of the alternating series must we add to approximate the
true sum with error less than 1/10000?
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Notice that there are now three disjoint classes of infinite series: those which converge
absolutely, those which converge conditionally, and those which diverge. Putting all this
together, we have the following diagram illustrating the various possibilities for infinite series.
This diagram is extremely important to understand:

1.3.3 The Cauchy Product of Infinite Series

The Cauchy product of two infinite series ∑
n

an and ∑
n

bn is defined to be the series

∑
n

cn, where cn =
n

∑
j=0

ajbn−j = a0bn + a1bn−1 + a2bn−2 + .... + an−1b1 + anb0.

The convergence of ∑
n

an and ∑
n

bn is not in itself sufficient to ensure the convergence

of the Cauchy product of these series. Convergence is however assured provided that the
series ∑

n
an and ∑

n
bn are absolutely convergent.

Theorem 1.3.3. The Cauchy product ∑
n

cn of two absolutely convergent infinite series

∑
n

an and∑
n

bn is absolutely convergent, and

∑
n

cn =

(
∑
n

an

)(
∑
n

bn

)
.

Proof. For each non-negative integer m, let

Sm = {(j, k) ∈ Z×Z : 0 ≤ j ≤ m, 0 ≤ k ≤ m} ,
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Tm = {(j, k) ∈ Z×Z : 0 ≤ j, 0 ≤ m, 0 ≤ j + k ≤ m} ,

Now
m

∑
n=0

cn = ∑
(j,k)∈Tm

ajbk and
(

m

∑
n=0

an

)(
m

∑
n=0

bn

)
= ∑

(j,k)∈Sm

ajbk.

Also
m

∑
n=0
|cn| ≤ ∑

(j,k)∈Tm

|aj||bk| ≤ ∑
(j,k)∈Sm

|aj||bk| ≤
(

∑
n
|an|

)(
∑
n
|bn|
)

.

since |cn| ≤=
n

∑
j=0
|aj||bn−j| and the infinite series ∑

n
an and ∑

n
bn are absolutely convergent.

It follows that the Cauchy product ∑
n

cn is absolutely convergent, and is thus convergent.
Moreover∣∣∣∣∣∑n

c2m
n −

(
m

∑
n

an

)(
m

∑
n

bn

)∣∣∣∣∣ =

∣∣∣∣∣∣ ∑
(j,k)∈T2m\Sm

ajbk

∣∣∣∣∣∣
≤ ∑

(j,k)∈T2m\Sm

∣∣ajbk
∣∣

≤ ∑
(j,k)∈S2m\Sm

∣∣ajbk
∣∣

=

(
2m

∑
n
|an|

)(
2m

∑
n
|bn|
)
−
(

m

∑
n
|an|

)(
m

∑
n
|bn|
)

,

since Sm ⊂ T2m ⊂ S2m. But

lim
m→∞

(
2m

∑
n
|an|

)(
2m

∑
n
|bn|
)

=

(
∞

∑
n
|an|

)(
∞

∑
n
|bn|
)

= lim
m→∞

(
m

∑
n
|an|

)(
m

∑
n
|bn|
)

,

since the infinite series ∑
n

an and ∑
n

bn are absolutely convergent. It follows that

lim
m→∞

(
2m

∑
n

cn −
(

m

∑
n

an

)(
m

∑
n

bn

))
= 0,

and hence
∞

∑
n

cn = lim
m→∞

2m

∑
n

cn =

(
∞

∑
n

an

)(
∞

∑
n

bn

)
,
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as required. �

1.4 Summary of convergence(divergence) tests

Having completed our discussion of methods to classify infinite series as absolutely con-
vergent, conditionally convergent, or divergent, we now summarize the procedure one
should use when trying to solve such a classification problem. To classify an infinite series

∑ an as absolutely convergent, conditionally convergent or divergent, follow these steps:

1. First, check to see whether the series is a p-series or a geometric series (or is a sum or
difference of series of this type). If it is, use the p..series Test and/or Geometric Series
Test (together with linearity properties) to classify the series.

2. If the terms of the series contain only multiplication and division and contain ex-
ponentials or factorial terms, use the Ratio Test. (If the terms of the series are all
polynomials in n, avoid the Ratio Test.)

3. Otherwise, classify the series as positive, negative, alternating, or none of these. If the
series is negative, factor out−1 from the series and treat what remains as a positive
series.

4. If the series is positive:

(a) If the terms of the series contain addition/subtraction in the denominator, or if
they contain sines or cosines, try the Comparison Test.

(b) If lim
n→∞

an 6= 0, then the series diverges by the nth-Term Test.

(c) If the terms of the series look like a function you can integrate, try the Integral Test
(use this only as a last resort).

5. If the series is alternating, compute lim
n→∞
|an|.

(a) If this limit is not zero, then the series diverges by the nth-Term Test.

(b) If this limit is zero, you can usually verify that |an| ≥ |an+1|, then the series
converges by the Alternating Series Test. In this case, you then have to examine
the series ∑

n
|an| :
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(i) If ∑
n
|an| converges, then ∑

n
an converges absolutely.

(ii) If ∑
n
|an| diverges, then ∑

n
an converges conditionally.

6. If the series is neither positive, negative nor alternating:

(a) If you can show that lim
n→∞
|an| 6= 0, then the series diverges by the nth-Term Test.

(b) Forget the original series and try to show that the positive series ∑
n
|an| converges;

in this case the original series converges absolutely by definition.
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2
Sequences and Series of Functions

In this chapter, wewill use the concepts developed in Chapter 1 to define and study functions
which are written as infinite series. What we will find is that several functions we know (like
the exponential function, sine, cosine, arctangent, etc.) can be written as an infinite series
which is relatively easy to work with. Furthermore, the representation of these and other
functions by a class of infinite series called "power series" has many applications.

2.1 Sequences Functions

2.1.1 Uniform Convergence of a Sequence of Functions

Definition 2.1.1. (Pointwise Convergence)

For each n ∈N, let fn : A ⊆ R→ R be a real valued function on A. The sequence ( fn) of
functions converges pointwise on A to a function f if, for all x ∈ A, the sequence of real
numbers ( fn(x)) converges to the real number f (x). We often write

lim
n→∞

fn(x) = f (x) or lim
n→∞

fn = f .

Thus we have

∀x ∈ A, ∀ε > 0, ∃n0 ∈N such that, ∀n ∈N, if n > n0, then | fn(x)− f (x)| < ε.
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Remark 2.1.1. There are several notations for the sequences of functions

( fn)n∈N, ( fn)n≥0, ( fn), or f0, f1, f2, ...., fn, ....

There is a difference between ( fn) and fn: ( fn) is the sequence and fn is the term of rank n,

or general term of this sequence.

Example 2.1.1. Let fn(x) =
x2 + nx

n
=

x2

n
+ x, and

lim
n→∞

fn(x) = lim
n→∞

(
x2

n
+ x
)
= 0 + x = x.

If f (x) = x, then fn → f as n→ ∞. In this case, the functions fn are everywhere continuous
and differentiable, and the limit function is also everywhere continuous and differentiable.

Example 2.1.2. 1. Let gn(x) = xn on the set [0, 1].

lim
n→∞

gn(x) = lim
n→∞

xn = g(x) =

 0 if 0 ≤ x < 1,

1 if x = 1.

In this case, the functions gn(x) are continuous on [0, 1], but the limit function g(x) is
not continuous at x = 1.
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2. ∀n ∈N, ∀x ∈ R+, fn(x) =
xn

1 + xn

lim
n→∞

fn(x) = lim
n→∞

xn

1 + xn = f (x) =


0 if 0 ≤ x < 1,

1/2 if x = 1,

1 if x > 1.

In this case, the functions fn(x) are continuous on R+, but the limit function f (x) is
not continuous at x = 1.

Example 2.1.3. 1. ∀n ∈N∗, ∀x ∈ R+; gn(x) =
sin(nx)

n
: Since we have

∀n ∈N∗, ∀x ∈ R+; 0 ≤ |gn(x)| ≤ 1
n

, then, gn(x)→ g(x) ≡ 0.

We have also, ∀n ∈ N∗, ∀x ∈ R+, g′n(x) = cos(nx), and this clearly shows that, in
the case where x 6= 2kπ(k ∈N) the functions (g′n(x))n≥1 has no limit when n tends
to the infinity. For all x ∈ R+ and x 6= 2kπ(k ∈N), we have

d
dx

{
lim

n→∞
gn

}
(x) 6= lim

n→∞

d
dx
{(gn)(x)} .

2. Let (hn)n≥0 defined on ]0, 1[ such that,

∀n ∈N, ∀x ∈]0, 1[; hn(x) = nxn.
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For all x ∈]0, 1[, we have

lim
n→∞

hn(x) = lim
n→∞

nxn = lim
n→∞

n
e−n ln x = lim

n→∞

−1
e−n ln x ln x

= 0,

therefore the sequence (hn)n converges on ]0, 1[ to the function h = 0. But

∫ 1

0
[ lim
n→∞

hn(x)]dx =
∫ 1

0
0dx = 0 6= 1 = lim

n→∞

n
n + 1

= lim
n→∞

∫ 1

0
hn(x)dx.

Important Question

Suppose f (x) = lim
n→∞

fn(x) for all x ∈ A. What additional hypothesis would ensure the
following?

(i) If each fn is continuous on A, then f is continuous on A.

(ii) if each fn is differentiable on A, then f is differentiable on A.

The best general answer to these questions has to do with the concept of uniform conver-

gence.

Definition 2.1.2. (Uniform Convergence)

Let ( fn) be a sequence of functions defined on A ⊂ R. We say that ( fn) converges uniformly
on A to the limit function f defined on A if for every ε > 0 there exists an n0 ∈N such that

| fn(x)− f (x)| < ε for all x ∈ A,

whenever n ≥ n0. Which is equivalent to

∀ε > 0, ∃n0 ∈N (n0 = n0(ε))/(n > n0) =⇒ (∀x ∈ A, | fn(x)− f (x)| < ε).

or
lim

n→∞
‖ fn − f ‖∞ = lim

n→∞
sup
x∈A
| fn(x)− f (x)| = 0.

This means that for every n ≥ n0, the difference between fn(x) and f (x) is less than ε

for every x ∈ A.

Remark 2.1.2. In the definition, the value of n0 is independent of x.

Here is a figure that graphically depicts the definition:
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Example 2.1.4. Example of Non-Uniform Convergence

gn(x) =


nx if 0 ≤ x ≤ 1

n
2− nx if 1

n
≤ x ≤ 2

n
0 otherwise.

lim
n→∞

gn(x) = g(x) = 0.

If g(x) := 0, then (gn)→ g pointwise. Let ε =
1
2

and xn =
1
n

. Then

|gn(xn)− g(xn)| = |1− 0| = 1 > ε =
1
2

.

So, it is not true that for all ε > 0, there exist an n0 ∈ N large enough such that n ≥ n0

implies |gn(x)− g(x)| < ε for all x. So, (gn) does not converge to g uniformly.
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Example 2.1.5. Another Example of Non-Uniform Convergence For x ∈ R and n ∈ N,

let

hn(x) =
enx

1 + enx =⇒ lim
n→∞

hn(x) =


0 if x < 0
1
2

if x = 0

1 if x > 0.

Example 2.1.6. Example of Uniform Convergence

fn(x) =

√
x2 +

1
n2 lim

n→∞
fn(x) =

√
x2 + 0 =

√
x2 = |x|.

So, fn(x)→ f (x) = |x| pointwise. Let ε > 0 be given. Choose n0 ∈ N large enough such
that 1

n0
< ε. Then for any x ∈ R and n ≥ n0 we have

| fn(x)− f (x)| =

∣∣∣∣∣
√

x2 +
1
n2 − |x|

∣∣∣∣∣ =
∣∣∣∣∣
√

x2 +
1
n2 − |x|

∣∣∣∣∣

√

x2 + 1
n2 + |x|√

x2 + 1
n2 + |x|


=

1
n2√

x2 + 1
n2 + |x|

≤
1

n2√
0 + 1

n2 + 0

=
1
n
< ε.

This shows that ( fn) → f uniformly on R. Note that each fn(x) is both continuous and
differentiable on R, but f (x) = |x| is continuous on R and not differentiable at x = 0.
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Plot of f1(x), f3(x), f10(x), and |x|.

Cauchy Criterion for Uniform Convergence

Theorem 2.1.1. A sequence of functions ( fn) defined on a set A ⊆ R converges uniformly

on A if and only if for every ε > 0 there exists an n0 ∈ N such that | fn(x)− fm(x)| < ε

whenever m, n ≥ n0 and x ∈ A.

Proof. (=⇒) Assume the sequence ( fn) converges uniformly on A to a limit function f .

Let ε > 0 be given. Then there exists an n0 ∈ N such that | fn(x)− f (x)| < ε

2
, whenever

n ≥ n0 and x ∈ A. Then if n, m ≥ n0 and x ∈ A, we have

| fn(x)− fm(x)| = | fn(x)− f (x) + f (x)− fm(x)|

≤ | fn(x)− f (x)|+ | f (x)− fm(x)| = ε

2
+

ε

2
= ε.

(⇐=) Conversely, assume that for every ε > 0 there exists an n0 ∈ N such that | fn(x)−
fm(x)| < ε. whenever m, n ≥ n0 and x ∈ A. This hypothesis implies that, for each x ∈ A,

( fn(x)) is a Cauchy sequence. By Cauchy’s Criterion, this sequence converges to a point,
which we will call f (x). So, the uniformly Cauchy sequence converges pointwise to the
function f (x). We must show that the convergence is also uniform. For the value of ε given
above, we use the corresponding n0. Then for n, m ≥ n0 and all x ∈ A,

| fn(x)− fm(x)| < ε.
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Taking the limit as m→ ∞ gives

| fn(x)− f (x)| ≤ ε for all x ∈ A,

which shows that ( fn) converges uniformly to f on A. This completes the proof. �

Proposition 2.1.1. Let ( fn) → f pointwise on A ⊆ R. If there exists a real positive

sequence (αn) such that

• lim
n→∞

αn = 0,

• | fn(x)− f (x)| ≤ αn for all x ∈ A.

Then ( fn)→ f uniformly on A.

Example 2.1.7. Consider the sequence

fn(x) =
e−nx

n
for all x ∈ R+ and n ≥ 1.

( fn)→ f (x) = 0 pointwise on R+. for all n ≥ 1, we have:

| fn(x)− f (x)| = e−nx

n
≤ 1

n
= αn for all x ∈ R+

Since 1
n
→n→∞ 0, we conclude that ( fn)→ 0 uniformly on R+.

2.1.2 Uniform Convergence and Continuity

Theorem 2.1.2. Continuous Limit Theorem

Let ( fn) be a sequence of functions defined on A ⊆ R that converges uniformly on A to a

function f . If each fn is continuous at c ∈ A, then f is continuous at c.

Proof. Let ε > 0 be given. Fix c ∈ A. Since fn → f uniformly, there exists an n0 ∈ N

such that
| fn0(x)− f (x)| < ε

3
for all x ∈ A.

Since fn0 is continuous at c, there exists δ > 0 such that | fn0(x)− fn0(c)| <
ε

3
whenever
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|x− c| < δ. If |x− c| < δ, then

| f (x)− f (c)| = | f (x)− fn0(x) + fn0(x)− fn0(c) + fn0(c)− f (c)|

≤ | f (x)− fn0(x)|+ | fn0(x)− fn0(c)|+ | fn0(c)− f (c)|

<
ε

3
+

ε

3
+

ε

3
= ε.

The first and third ε

3
are due to uniform convergence and the choice of n0. The second ε

3
is

due to the choice of δ. This shows that f is continuous at c, as desired. �

Remark 2.1.3. The converse of theorem 2.1.2 is generally false: A sequence of continuous
functions can converge to a continuous function, without the convergence being uniform.

Example 2.1.8. Let for all n ∈ N fn(x) =
1

nx + 1
, x ∈ I = ] 0, 1 [ It’s clear that ( fn) →

f (x) = 0 pointwise on I that all fn are continuous on I and f is continuous also, but ( fn)

does not converge uniformly to f (x) = 0 on I. Since

sup
x∈I
| fn(x)− f (x)| = 1 −→/0 as n→ ∞.

Theorem 2.1.3. (Dini’s theorem)

Let ( fn) be a sequence of real functions defined on the bounded and closed interval [a, b],

and assume that

• Each ( fn) is continuous on [a, b] for large n,

• fn −→P.C
n→∞ f on [a, b], 1

• f is continuous on [a, b],

• ( fn) is increasing(or decreasing) on [a, b].

∀n ≥ N1 ∀x ∈ [a, b], fn+1(x) ≥ fn(x), or, fn+1(x) ≤ fn(x).

Then ( fn) converges uniformly on [a, b].

Remark 2.1.4. The condition "I = [a, b] is closed and bounded" is really important in Dini’s
theorem. It is thanks to her that we were able to write, in the proof of this theorem, that each
function continues fn is bounded on I and that it reaches its upper limit at a point xn of I.

1P.C means Pointwise Convergence.
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2.1.3 Uniform Convergence and Integration

Theorem 2.1.4. Let fn : A −→ R be a real-valued function on A. Suppose that

• fn converges uniformly on [a, b] to a function f and

• each fn is continuous on [a, b].

Then

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
lim

n→∞
fn(x)dx =

∫ b

a
f (x)dx.

Example 2.1.9. Find the value of lim
n→∞

∫ 1

0

nx + 1
nx2 + x + n

dx.

Let fn(x) =
nx + 1

nx2 + x + n
=

x + 1/n
x2 + x/n + 1

→ x
x2 + 1

= f (x), as n→ ∞. Moreover,

| fn(x)− f (x)| =

∣∣∣∣ (nx + 1)(x2 + 1)− x(nx2 + x + n)
(x2 + 1)(nx2 + x + n)

∣∣∣∣
=

∣∣∣∣ 1
(x2 + 1)(nx2 + x + n)

∣∣∣∣
=

1
n

∣∣∣∣ 1
(x2 + 1)(x2 + x/n + 1)

∣∣∣∣ ≤ 1
n

,

since 1 + x2 ≥ 1 and x2 + x/n + 1 ≥ 1. Clearly this means that

sup
0≤x≤1

| fn(x)− f (x)| ≤ 1
n

,

as n→ ∞. The convergence is therefore uniform and

lim
n→∞

∫ 1

0

nx + 1
nx2 + x + n

dx =
∫ 1

0
lim

n→∞

nx + 1
nx2 + x + n

dx

=
∫ 1

0

x
x2 + 1

=

[
1
2

ln(1 + x2)

]1

0
=

ln 2
2

.

2.1.4 Uniform Convergence and Differentiation

Theorem 2.1.5. Differentiable Limit Theorem

Let ( fn)→ f pointwise on the closed interval [a, b] and assume each fn is differentiable.

If ( f ′n)→ g uniformly on [a, b], then f is differentiable and f ′ = g.
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Proof. Fix c ∈ [a, b] and let ε > 0. We will show that there exists δ > 0 such that∣∣∣∣ f (x)− f (c)
x− c

− g(c)
∣∣∣∣ < ε,

whenever 0 < |x− c| < δ and x ∈ [a, b].

For x 6= c, consider the following:∣∣∣∣ f (x)− f (c)
x− c

− g(c)
∣∣∣∣ ≤ ∣∣∣∣ f (x)− f (c)

x− c
− fn(x)− fn(c)

x− c

∣∣∣∣︸ ︷︷ ︸
iii

+

∣∣∣∣ fn(x)− fn(c)
x− c

− f ′n(c)
∣∣∣∣︸ ︷︷ ︸

ii

+
∣∣ f ′n(c)− g(c)

∣∣︸ ︷︷ ︸
i

(2.1.1)

Since lim
n→∞

f ′n(c) = g(c), there exists n1 ∈N such that

∣∣ f ′n(c)− g(c)
∣∣ < ε

3
for all n ≥ n1. (2.1.2)

From Cauchy’s Criterion for uniform convergence, since the sequence ( f ′n) converges uni-
formly to g, there exists an n2 ∈N such that

∣∣ f ′n(x)− f ′m(x)
∣∣ < ε

3
whenever m, n ≥ n2 and x ∈ [a, b].

Set N = max {n1, n2} , the function fN is differentiable at c. So there exists δ > 0 such that∣∣∣∣ fN(x)− fN(c)
x− c

− f ′N(c)
∣∣∣∣ < ε

3
whenever 0 < |x− c| < δ and x ∈ [a, b]. (2.1.3)

We’ll show this δ will suffice.
Suppose 0 < |x− c| < δ and m ≥ N. By the Mean Value Theorem applied to fm − fN on
the interval [c, x] (if x < c the argument is the same) there exists α ∈ (c, x) such that

f ′m(α)− f ′N(α) =
[ fm(x)− fN(x)]− [ fm(c)− fN(c)]

x− c
.
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By our choice of N,
∣∣ f ′m(α)− f ′N(α)

∣∣ < ε

3
and so

∣∣∣∣ [ fm(x)− fN(x)]− [ fm(c)− fN(c)]
x− c

∣∣∣∣ < ε

3
.

Since fm → f as m→ ∞, by the Algebraic Order Limit Theorem∣∣∣∣ f (x)− f (c)
x− c

− fN(x)− fN(c)
x− c

∣∣∣∣ ≤ ε

3
. (2.1.4)

Combining inequalities (2.1.1), (2.1.2), (2.1.3), and (2.1.4), we obtain for 0 < |x− c| < δ and
x ∈ [a, b] ∣∣∣∣ f (x)− f (c)

x− c
− g(c)

∣∣∣∣ ≤ ε

3
+

ε

3
+

ε

3
.

This proves that f = lim
n→∞

fn is differentiable and that f ′ = g = lim
n→∞

f ′n. �

Example 2.1.10. Earlier, we studied the example

hn(x) =

√
x2 +

1
n2

We showed that (hn(x))→ h(x) = |x| uniformly on R. However, since the function h(x) =

|x| is not differentiable at x = 0, by the previous theorem, we know that h′n(x) does not
converge uniformly to a limit function on R. Note that

lim
n→∞

h′n(x) = lim
n→∞

x√
x2 + 1

n2

=


1 if x > 0

0 if x = 0

−1 if x < 0.

Plots of h1(x), h3(x), h10(x), and |x|. Plots of h′1(x), h′3(x), and h′10(x).
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Example 2.1.11. Let gn(x) =
x
2
+

x2

2n
, then

g(x) = lim
n→∞

gn(x) = lim
n→∞

(
x
2
+

x2

2n

)
=

x
2

(pointwise),

and g′(x) =
1
2

. On the other hand,

g′n(x) =
1
2
+

x
n
→ h(x) =

1
2
= g′(x) (pointwise for allx ∈ R).

We’ll now examine how the previous theorem applies to this example.
Consider the interval [−M, M]where M > 0. Let h(x) =

1
2

for all x ∈ R. Let ε > 0 be given.

Let N ∈N be large enough such that M
N

< ε. Then if x ∈ [−M, M] and n ≥ N, we have

∣∣g′n(x)− h(x)
∣∣ = ∣∣∣∣(1

2
+

x
n

)
− 1

2

∣∣∣∣ = ∣∣∣ xn ∣∣∣ ≤ M
N

< ε.

This shows that g′n converges uniformly to h on [−M, M]. Because we verified that (g′n)

converges uniformly on [−M, M], the theorem tells us that

lim
n→∞

g′n(x) = h(x) = g′(x) for x ∈ [−M, M].

Since M is arbitrary we can conclude that

lim
n→∞

g′n(x) = h(x) = g′(x) for x ∈ R.
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Theorem 2.1.6. Theorem Related to Differentiable Limit Theorem

Let ( fn) be a sequence of differentiable functions defined on the closed interval [a, b], and

assume ( f ′n) converges uniformly on [a, b]. If there exists a point x0 ∈ [a, b] where the

sequence ( fn(x0)) converges, then ( fn) converges uniformly on [a, b].

Proof. Let x ∈ [a, b] where x 6= x0. Both x and x0 will be fixed real numbers throughout
the proof. Without loss of generality, we may assume x > x0. (If x < x0, the argument is
the same.) By the Mean Value Theorem applied the function fn − fm on the interval [x0, x],

there exists some α ∈ (x0, x) (α depends on m and n) such that

f ′n(α)− f ′m(α) =
[ fn(x)− fm(x)]− [ fn(x0)− fm(x0)]

x− x0
,

which implies

[ fn(x)− fm(x)]− [ fn(x0)− fm(x0)] =
(

f ′n(α)− f ′m(α)
)
(x− x0). (2.1.5)

Let ε > 0 be given. Since ( f ′n) converges uniformly, by Cauchy’s Criterion for uniformly
convergent sequences of functions, there exists some n1 ∈N such that

| fn(c)− fm(c)| <
ε

2(b− a)
for all n, m ≥ n1 and c ∈ [a, b].

By hypothesis, the sequence ( fn(x0) converges. So there exists an n2 ∈N such that

| fn(x0)− fm(x0)| <
ε

2
for all m, n ≥ n2.

Let N = max{n1, n2}. Then if m, n ≥ N, we have

| fn(x)− fm(x)| ≤ |( fn(x)− fm(x))− ( fn(x0)− fm(x0))|+ | fn(x0)− fm(x0)|

=(2.1.5) (
f ′n(α)− f ′m(α)

)
(x− x0) + | fn(x0)− fm(x0)|

<
ε

2
(x− x0) +

ε

2
≤ ε

2
+

ε

2
= ε.

Since the choice of N was independent of x, this proves that ( fn) converges uniformly on
[a, b]. �
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Remark 2.1.5. Combining the previous two theorems gives a stronger version of the Differ-
entiable Limit Theorem.

Theorem 2.1.7. Better Version of Differentiable Limit Theorem

Let ( fn) be a sequence of differentiable functions defined on the closed interval [a, b], and

assume that the sequence ( f ′n) converges uniformly to a function g on [a, b]. If there exists

a point x0 ∈ [a, b] for which ( fn(x0)) converges, then ( fn) converges uniformly. Moreover,

the limit function f = lim fn is differentiable and satisfies f ′ = g.

2.2 Series of Functions

Definition 2.2.1. 1. Let f and fn for n ∈N be functions defined on a set A ⊆ R.

(a) The infinite series ∑
n≥1

fn(x) = f1(x) + f2(x) + f3(x) + ...... converges pointwise

on A to f (x) if the sequence of partial sums sk(x) = f1(x) + f2(x) + ..... + fk(x)

converges pointwise to f (x) on A.

(b) The infinite series converges uniformly on A to f (x) if the sequence of partial
sums converges uniformly on A to f (x).

2. Let

D =

{
x ∈ A : such that ∑

n≥1
fn(x) converges

}
.

D is the domain of pointwise convergence of the series ∑
n≥1

fn(x).

3. We say that the series ∑
n≥1

fn(x) is absolutely convergeent on A if the series ∑
n≥1
| fn(x)|

is pointwise convergent for all x ∈ A.

Remark 2.2.1. Since an infinite series of functions is defined in terms of the limit of a
sequence of partial sums, everything we already know about sequences applies to series.
For the sum ∑

n≥1
fn(x), we merely restate all of the previous theorems for the sequence of kth

partial sums
sk(x) = f1(x) + ..... + fk(x).

Example 2.2.1. • We consider the series of functions ∑
n≥1

enx

n
. The functions fn(x) =
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enx

n
are positive. We have

lim
n→∞

fn+1(x)
fn(x)

= lim
n→∞

n
n + 1

ex = ex.

Therefore, according to d’Alembert’s test(LCT), the series is pointwise convergent if
ex < 1, in other words the domain of pointwise convergence is R∗−.

• Let ∑
n≥1

sin(nx)
n2 + |x| be a function series defined on R. We have for all n ∈N∗ and x ∈ R

∣∣∣∣ sin(nx)
n2 + |x|

∣∣∣∣ ≤ 1
n2 .

The series ∑
n≥1

1
n2 is convergent (Riemann series), therefore according to the compari-

son test the given series is absolutely convergent on R.

Definition 2.2.2. We say that the series ∑
n≥1

fn(x) is normally convergent on A if and only if

the series ∑
n≥1
‖ fn‖∞ converges such that ‖ fn‖∞ = sup

x∈A
| fn(x)|.

Example 2.2.2. • The normal convergence of the series of the general term fn(x) =
cos(nx)
n2 ln(n)

on R for n ≥ 2. the function cos is bounded for all x ∈ R, thus ‖ fn‖∞ =

1
n2 ln(n)

. As the series ∑
n≥2

1
n2 ln(n)

is convergent (Bertrand series), we conclude that

the series of functions ∑
n≥2

cos(nx)
n2 ln(n)

converges normally on R.

• We consider the function series defined by ∑
n

nx2e−x
√

n for all x ∈ R+.

To study the normal convergence we must calculate ‖ fn‖∞ = sup
x∈R+

| fn(x)|. The func-

tion fn is differentiable on R+ and for all x ∈ R+

f ′n(x) = nx(2− x
√

n)e−x
√

n = 0⇒ x =
2√
n

,

then fn ↗ for x ∈ [0,
2√
n
] and fn ↘ for x ∈ [

2√
n

, ∞], which implies that

‖ fn‖∞ = sup
x∈R+

| fn(x)| = fn

(
2√
n

)
= 4e−2.
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The series∑
n

4e−2 is divergent, then the function series∑
n

nx2e−x
√

n does not converge

normally on R+.

2.2.1 Weierstrass M-test

Theorem 2.2.1. Let A ⊂ R. Suppose that there exists positive constants Mn, n = 1, 2, .....,

such that | fn(x)| ≤ Mn for x ∈ A. If ∑
n≥1

Mn < ∞, then ∑
n≥1

fn(x) converges uniformly on

A.

Proof. Since | fn(x)| ≤ Mn and ∑
n≥1

Mn is convergent, it is clear that2 f (x) = ∑
n≥1

fn(x)

exists for every x ∈ A. Now

‖ f (x)− sn‖∞ =

∥∥∥∥∥ ∞

∑
k=1

fk(x)−
n

∑
k=1

fk(x)

∥∥∥∥∥
∞

=

∥∥∥∥∥ ∞

∑
k=n+1

fk(x)

∥∥∥∥∥
∞

≤
∞

∑
k=n+1

‖ fk(x)‖∞

≤
∞

∑
k=n+1

Mk −→ 0,

as k→ ∞. By definition, this implies that the series is uniformly convergent. �

Example 2.2.3. Solution. Let 0 < a < 1 and ab > 1. Show that f (x) =
∞

∑
k=1

ak sin(bkπx) is

uniformly convergent.

We see that
∣∣∣ak sin(bkπx)

∣∣∣ ≤ ak, k = 1, 2, 3, ..., since | sin(bkπx)| ≤ 1. As
∞

∑
k=1

ak is a

geometric series with quotient a and |a| < 1, we know that this series is convergent. Thus,
by Weierstrass’ M−test, it follows that the original series is uniformly convergent

2.2.2 Abel Uniform Criterion

Theorem 2.2.2. Let ( fn) and (gn) two sequences of functions defined from A to R such

that:

1. There exists M > 0 such that for all n ∈N, sup
x∈A

∣∣∣∣∣ n

∑
k=0

fk(x)

∣∣∣∣∣ ≤ M,

2The absolute convergence implies the pointwise convergence
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2. for all x ∈ A, (gn) is decreasing.

3. (gn)→ 0 uniformly on A.

Then, the series∑
n

fn(x)gn(x) converges uniformly on A.

2.2.3 Term-by-term Continuity Theorem

Theorem 2.2.3. Let fn be continuous functions defined on a set A ⊆ R, and assume

∑
n≥1

fn converges uniformly on A to a function f . Then f is continuous on A.

Proof. Apply the Continuous Limit Theorem (2.1.2) to the partial sums sk = f1 + f2 +

.... + fk. �

Example 2.2.4. Show that f (x) =
∞

∑
k=1

2x
x2 + k4 is continuous.

Solution. Let fk(x) =
2x

x2 + k4 . Then

| fk(x)| ≤ 2|x|
x2 + k4 , k = 1, 2, 3, ...

We need to find constants Mk such that | fk(x)| ≤ Mk, so we maximize f (x) =
2x

x2 + k4 on
[ 0, ∞ [ . Note that f (0) = 0 and f (x)→ 0 as x → ∞. Moreover,

f ′(x) =
2k4 − 2x2

(x2 + k4)2 ⇒ f ′(x) = 0
[
⇔ x = ± k2

]
,

so
| f (x)| ≤ sup

x
f (x) = f (k2) =

2k2

k4 + k4 =
1
k2 =: Mk.

Since
∞

∑
k=1

1
k2 < ∞, the M−test proves that

∞

∑
k=1

fk(x) is uniformly convergent. Since fk are

continuous, the uniform convergence proves that also f is continuous.

2.2.4 Term-by-term Integration Theorem

Theorem 2.2.4. Suppose that f (x) = ∑
n

un(x) is uniformly convergent for x ∈ [a, b]. If

f0, f1, f2, .... are continuous functions on [a, b], then we can exchange the order of sum-
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mation and integration:

∫ b

a
f (x)dx =

∫ b

a
∑
n

fn(x)dx = ∑
n

∫ b

a
fn(x)dx = ∑

n

∫ b

a
fn(x)dx.

Proof. Apply the theorem 2.1.4 of the uniform convergence and integration to the partial

sums sn(x) =
n

∑
k=0

fk(x). �

Example 2.2.5. Let f (x) =
∞

∑
k=1

2x
x2 + k4 prove that

∫ 1

0
f (x)dx =

∞

∑
k=1

ln
(

1 + 1/k4
)

.

Solution. From the above example (2.2.4) f is uniformly convergent. Moreover, the
uniform convergence implies that we can integrate the series termwise, so

∫ 1

0
f (x)dx =

∞

∑
k=1

∫ 1

0

2x
x2 + k4 dx =

∞

∑
k=1

[
ln(x2 + k4)

]x=1

x=0
=

∞

∑
k=1

ln
(

1 + 1/k4
)

.

2.2.5 Term-by-termDifferentiability Theorem

Theorem 2.2.5. Suppose the following three statements:

1. Let fn be differentiable functions defined on an interval A = [a, b].

2. Assume∑
n

f ′n(x) converges uniformly to a limit g(x) on A.

3. ∑
n

fn(x) converges pointwise on A.

Then, the series ∑
n

fn(x) converges uniformly to a differentiable function f (x) satisfying

f ′(x) = g(x) on A. In other words,

f (x) = ∑
n

fn(x) and f ′(x) = ∑
n

f ′n(x).

Proof. Apply the stronger version of the Differentiable Limit Theorem 2.1.7 to the partial
sums sk = f1 + f2 + ... + fk. �

Example 2.2.6. Show that f (x) =
∞

∑
k=1

1
x2 + k2 is continuously differentiable (that is, show

that f ∈ C1).
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Solution. Let fk(x) =
1

x2 + k2 . Clearly | fk(x)| ≤ 1
k2 , k = 1, 2, 3, ..., so the series

defining f (x) is convergent for all x ∈ R (actually uniformly convergent by the M−test). To
show that f (x) is differentiable, we prove the uniform convergence of the series

∞

∑
k=1

f ′k(x) =
∞

∑
k=1

−2x
(x2 + k2)2 .

Clearly f ′k(x)→ 0 as x → ±∞ and

f ′′k (x) =
6x2 − 2k2

(x2 + k2)3 ⇒
[

f ′′k (x) = 0⇔ x2 = k2/3
]

,

so
| f ′k(x)| ≤ | sup

x
f ′k(x)| = | f ′k(±3−1/2k)| = 3

√
3

8k3 .

Since
∞

∑
k=1

1
k3 < ∞, the M−test proves that g(x) =

∞

∑
k=1

f ′k(x) is uniformly convergent. More-

over, f ′k are continuous for k = 1, 2, 3, ..., so g is a continuous function. This is sufficient for
claiming that f is differentiable with f ′(x) = g(x) for all x. Thus f inf C1.

2.2.6 Cauchy Criterion for Uniform Convergence of Series

Theorem2.2.6. A series∑
n

fn converges uniformly on A ⊆ R if and only if for every ε > 0

there exists an N ∈N such that

|sn − sm| = | fm+1(x) + fm+2(x) + .... + fn(x)| < ε.

whenever n > m ≥ N and x ∈ A.

2.3 Taylor and Power Series

2.3.1 Power Series

Definition 2.3.1. A power series (in x) centered at x = a is a function of the form

f (x) = ∑
n

an(x− a)n = a0 + a1(x− a) + a2(x− a)2 + a3(x− a)3 + a4(x− a)4 + ....
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where the a0, a1, .... are real numbers called the coefficients of the power serie.

Example 2.3.1.

∑
n≥0

xn

n!
centered at 0, ∑

n≥1

(x− 1)n

n
centered at 1

∑
n≥0

nxn centered at 0, ∑
n≥1

(x + 2)n

n2 centered at − 2.

Important Question: For which x ∈ R does the series ∑
n

an(x− a)n converge?

Theorem 2.3.1. If a power series∑
n

anxn converges at some nonzero point x0 ∈ R, then

it converges absolutely for any x satisfying |x| < |x0|.

Proof. If ∑
n

anxn
0 converges, then lim

n→∞
anxn

0 = 0. So there exists some M > 0 such that

|anxn
0 | < M for all n ≥ 0. If x satisfies |x| < |x0|, then

|anxn| = |anxn
0 |
∣∣∣∣ x
x0

∣∣∣∣n ≤ M
∣∣∣∣ x
x0

∣∣∣∣n .

By the Comparison Test the series ∑
n

anxn converges absolutely as follows:

∣∣∣∣∣∑n
anxn

∣∣∣∣∣ ≤∑
n
|anxn| ≤∑

n
M
∣∣∣∣ x
x0

∣∣∣∣n =
M

1−
∣∣∣ x

x0

∣∣∣ < ∞.

Thus, ∑
n

anxn converges absolutely for x satisfying |x| < |x0|. �

Example 2.3.2. For each power series, state where the power series is centered, identify its
second coefficient, its first term, its sixth term, and its ninth coefficient:

(a) f (x) =
∞

∑
n=0

(x− 2)n

n2 + 1
, (b) f (x) =

∞

∑
n=0

x2n

3n + 1
.

Definition 2.3.2. (Radius of Convergence) Let

R = sup

{
|x0| : ∑

n
anxn

0 converges
}

.

Then R is called the radius of convergence of the series ∑
n

anxn.
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Remark 2.3.1. From the previous theorem and the definition of the radius of convergence,
it is clear that if 0 < R < ∞, then the series converges for |x| < R and diverges for |x| > R.

Example 2.3.3. For what x does the given series converge?

(a)
∞

∑
n=1

(x− 3)n

n2n , (b)
∞

∑
n=0

n!(x + 4)n.

Solution: (a) We can apply the Ratio Test to the terms of this series. First, we have

ρ = lim
n→∞

| fn+1(x)|
| fn(x)| = lim

n→∞

∣∣∣ (x−3)n+1

(n+1)2n+1

∣∣∣∣∣∣ (x−3)n

n2n

∣∣∣ = lim
n→∞

(1/2)|x− 3| n
n + 1

= (1/2)|x− 3|.

By the Ratio Test, this series converges absolutely when ρ < 1. Since ρ = (1/2)|x− 3|, this
corresponds to the inequality (1/2)|x− 3| < 1⇔ 1 < x < 5. So the power series converges
absolutely when 1 < x < 5. Similarly, the series diverges when x < 1 or x > 5.

Weanalyze the cases x = 1 and x = 5 individually: If x = 1⇒ f (1) = ∑
n

(−1)n

n
. This series

converges conditionally (it is alternating harmonic). If x = 5⇒ f (5) = ∑
n

1
n

. This series

diverges since it is harmonic. In conclusion, we have determined that the series converges
absolutely when x ∈ (1, 5), the series converges conditionally when x = 1, and the series
diverges for all other x. We summarize this with the following picture,

(b) we have

ρ = lim
n→∞

∣∣∣ (x−3)n+1

(n+1)2n+1

∣∣∣∣∣∣ (x−3)n

n2n

∣∣∣ = lim
n→∞

(n + 1)|x + 4| =

 0 if x = −4

1 else
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Corollary 2.3.1. (Cauchy-Hadamard (C-H) Theorem).

If the series∑
n

anxn has radius of convergence R, then the set of all x for which the series

converges is one of the following intervals:

• If R = 0, the series converges only for x = 0.

• If 0 < R < ∞, the series converges for all x in one of the following four intervals:

(−R, R), [ − R, R ) , ( − R, R ] , [−R, R].

• If R = ∞, then the series converges for all x ∈ R.

Proof. This is an immediate consequence of the previous theorem and the definition of
the radius of convergence. If the corollary is not obvious, go back and review the previous
theorem and definition. �

Theorem 2.3.2. (Abel’s Formula).

Let ∑
n≥0

an(x− a)n be a power series centered at a. Then, the radius of convergence of this

power series is given by

R = lim
n→∞

|an|
|an+1|

,

(assuming this limit exists).

Proof. (Proof of the Cauchy-Hadamard Theorem and Abel’s Formula): Given power

series
∞

∑
n=0

an(x− a)n, let R = lim
n→∞

|an|
|an+1|

. We’ll begin by proving statement (1) of the C-H

Theorem, so we assume for now that 0 < R < 1. Now try to determine the convergence of
the power series using the Ratio Test; first compute:

Theorem 2.3.3. If a power series ∑
n≥0

anxn converges absolutely at a point x0, then it

converges uniformly on the closed interval [−|x0|, |x0|].

Proof. For each n ≥ 0, let Mn = |anxn
0 |. By hypothesis the series ∑

n≥0
anxn

0 converges

absolutely and so ∑
n≥0
|anxn

0 | = ∑
n≥0

Mn converges. Then for any x ∈ [−|x0|, |x0|], we have

∣∣∣∣∣∑n≥0
anxn

∣∣∣∣∣ ≤ ∑
n≥0
|anxn| ≤ ∑

n≥0
|anxn

0 | = ∑
n≥0

Mn < ∞.
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By the Weierstrass M-test, the series converges uniformly on the closed interval [−|x0|, |x0|].
�

Theorem 2.3.4. Abel’s Theorem about Uniform Convergence

Let g(x) = ∑
n≥0

anxn be a power series that converges at the point x = R > 0. Then

the series converges uniformly on the interval [0, R]. A similar result holds if the series

converges at x = −R.

We have seen that the sum f (x) = ∑
n≥0

an(x − a)n of a power series is continuous in

the interior (a − R, a + R) of its interval of convergence. But what happens if the series
converges at an endpoint a± R?

Before we turn to the proof, we need a lemma that can be thought of as a discrete version
of integration by parts.

Lemma2.3.1. (Abel’s SummationFormula) Let (an)n and (bn)n be two sequences of real

numbers, and let sn =
n

∑
k=0

ak. Then

N

∑
n=0

anbn = sNbN +
N−1

∑
n=0

sn(bn − bn+1).

If the series∑
n

an converges, and bn → 0 as n→ ∞, then

∞

∑
n=0

anbn =
∞

∑
n=0

sn(bn − bn+1).

Proof. Note that an = sn − sn−1 for n ≥ 1, and that this formula even holds for n = 0 if
we define s−1 = 0. Hence

N

∑
n=0

anbn =
N

∑
n=0

(sn − sn−1)bn =
N

∑
n=0

snbn −
N

∑
n=0

sn−1bn,

Changing the index of summation and using that s−1 = 0, we see that
N

∑
n=0

sn−1bn =
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N−1

∑
n=0

snbn+1 Putting this into the formula above, we get

N

∑
n=0

anbn =
N

∑
n=0

snbn −
N−1

∑
n=0

snbn+1 = sNbN +
N−1

∑
n=0

sn(b− n− bn+1)

and the first part of the lemma is proved. The second follows by letting N → ∞. �We are
now ready to prove:

Theorem2.3.5. The sum of a power series f (x) = ∑
n

an(x− a)n is continuous in its entire

interval of convergence. This means in particular that if R is the radius of convergence,

and the power series converges at the right endpoint a + R, then lim
x↑a+R

f (x) = f (a + R),

and if the power series converges at the left endpoint a− R, then lim
x↓a−R

f (x) = f (a− R).

Example 2.3.4. Summing a geometric series, we clearly have

1
1 + x2 =

1
1− (−x2)︸ ︷︷ ︸

=u

=
1

1− u
=

∞

∑
n=0

un =
∞

∑
n=0

(−1)nx2n, for |u| = |− x2| < 1⇔ |x| < 1.

Integrating, we get

∫ x

0

1
1 + t2 dt = arctan x =

∞

∑
n=0

(−1)n x2n+1

2n + 1
for |x| < 1

we see that the series converges even for x = 1. By Abel’s Theorem

π/4 = arctan 1 = lim
x→1

arctan x = lim
x→1

∞

∑
n=0

(−1)n x2n+1

2n + 1
=

∞

∑
n=0

(−1)n

2n + 1

Hence we have proved
π/4 = 1− 1/3 + 1/5− 1/7 + ....

This is often called Leibniz’ or Gregory’s formula for π.

Uniqueness of power series

Recall that we asked in the last section if a function could be represented by two differ-
ent power series centered at a. To address this question, suppose that function f can be
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represented by some power series on an open interval containing a, i.e. that

f (x) =
∞

∑
n=0

an(x− a)n = a0 + a1(x− a) + a2(x− 2)2 + a3(x− a)3 + a4(x− a)4 + ....

on (a− R, a + R) where R > 0 is the radius of convergence of the series. Then, f ′(x) can
be expressed as a power series centered at a with the same radius of convergence, so f

is infinitely differentiable on (a− R, a + R) (i.e. it is a function which can be repeatedly
differentiated without anything becoming undefined). Furthermore

f ′(x) = a1 + 2a2(x− a) + 3a3(x− a)2 + 4a4(x− a)3 + .....

f ′′(x) = 2a2 + 3.2a3(x− a) + 4.3a4(x− a)2 + ....

f (3)(x) = f ′′′(x) = 3.2a3 + 4.3.2a4(x− a) + ....
... =

...

f (n)(x) = n!an + (n + 1)!an+1(x− a) + ....

Now, plug in a for x in each of the following formulas above. We obtain

f ′(a) = a1 + 2a2(a− a) + 3a3(a− a)2 + 4a4(a− a)3 + ..... = a1

f ′′(a) = 2a2 + 3.2a3(a− a) + 4.3a4(a− a)2 + .... = 2a2

f (3)(a) = f ′′′(a) = 3.2a3 + 4.3.2a4(a− a) + .... = 3.2a3
... =

...

f (n)(a) = n!an + (n + 1)!an+1(a− a) + .... = n!an

The key formula that has been derived is in the last line above:

f (n)(a) = n!an ⇔ an =
f (n)(a)

n!
.

We have proven the following theorem:

Theorem2.3.6. (Formula for coefficientsofapower series). Suppose f (x) =
∞

∑
n=0

an(x−

a)n where this series converges on an open interval containing a (equivalently, the series

has positive radius of convergence). Then, for every n the coefficients an of the power
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series must satisfy

an =
f (n)(a)

n!
.

Theorem 2.3.7. (Uniqueness of coefficients). Suppose
∞

∑
n=0

an(x− a)n =
∞

∑
n=0

bn(x− a)n

on an open interval containing x = a. Then an = bn for all n.

Proof. By Theorem 2.3.6, both an and bn must be equal to f (n)(a)
n!

for all n, thus they are
equal to one another. �

Example 2.3.5. Suppose f (x) =
∞

∑
n=0

3
(n + 1)2 xn. Find f (9)(0).

By Theorem 2.3.6 with n = 9, we know that a9 =
f (9)(0)

9!
. Now a9 can be found by the

formula for f that is given; it is the coefficient on the x9 term which is 3
(9 + 1)2 = 3/100.

Thus we have f (9)(0) =
3.9!
100

.

The next question we ask is the converse: if you start with a function f which is infinitely
differentiable on (a− R, a + R), is it the case that f is representable by a power series? This
leads to the discussion in the next section.

2.3.2 Taylor Series

Definition 2.3.3. Given a function f which is infinitely differentiable on some open interval
containing a, the Taylor series of f centered at a is the power series

∞

∑
n=0

f (n)(a)
n!

(x− a)n = f (a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 +

f (3)(a)
3!

(x− a)3 + ...

If a = 0, then the series in this definition, namely

∞

∑
n=0

f (n)(0)
n!

xn = f (0) + f ′(0)x +
f ′′(0)

2
x2 +

f (3)(0)
3!

x3 + ...

is called the Taylor series of f or the Maclaurin series of f .

Remark 2.3.2. It is easy to confuse the terms "power series" and "Taylor series". A power

series is any expression of the form
∞

∑
n=0

an(x− a)n. A Taylor series is a particular power series

associated to some function f which is specified in advance.

University of Guelma Department of Mathematics BENRABAH. A



2.3 Taylor and Power Series 55

Main questions related to Taylor series:

1. For what x does the Taylor series of a function f centered at a converge?

2. What function does the Taylor series of f converge to?

At this point, we knowenough to answer thefirst question. The Taylor series of a function
f centered at a is an example of a power series centered at a. Therefore, by the Cauchy-
Hadamard Theorem, the Taylor series converges (absolutely) to f (a) when x = a. This is
because

∞

∑
n=0

f (n)(a)
n!

(x− a)n

∣∣∣∣∣
x=a

= f (a) + 0 + 0 + 0 + ..... = f (a).

Wealso know that there is some interval (a− R, a+ R) centered at a onwhich theTaylor

series of f converges to something. Ideally, the Taylor series of f should converge to f itself
(since it is the only possible power series representation of f ). But we don’t know at this point
whether or not this happens, or under what circumstances this happens.

Example 2.3.6. Prototype Example 1: f (x) = ex, and a = 0.

Here, we see that f (n)(x) = ex for all n. Therefore f (n)(a) = f (n)(0) = 1 for all n and
therefore the Taylor series of f is

∞

∑
n=0

f (n)(0)
n!

xn =
∞

∑
n=0

1
n!

xn =
∞

∑
n=0

xn

n!
.

To find where this series converges, we use Abel’s Formula:

R = lim
n→∞
|an|/|an+1| = lim

n→∞
(n + 1) = ∞

Since R = ∞, this series converges for all x by the Cauchy-Hadamard Theorem.

Example 2.3.7. Prototype Example 2: g(x) = sin x, and a = 0.

So the Taylor series of sin x is

∞

∑
n=0

g(n)(0)
n!

xn = g(0) + g′(0)x +
g′′(0)

2
x2 +

g′′′(0)
3!

x3 + ....

= 0 + x + 0x2 − 1
3!

x3 + 0x4 +
1
5!

x5 + 0x6 − 1
7!

x7 + ......

=
∞

∑
n=0

(−1)n

(2n + 1)!
x2n+1
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By an argument similar to the previous example (Abel’s Formula gives R = ∞), this series
converges absolutely for all x.

Remark 2.3.3. To study the convergence of Taylor series for arbitrary functions, we return
to the basics of infinite series. Recall from Chapter 1 that a series converges if the limit of its
partial sums exists and is finite. Therefore, to understand the convergence of Taylor series, it
makes sense to talk about the partial sums of a Taylor series. These partial sums are called
Taylor polynomials

Definition 2.3.4. Let n ≥ 0. Given a function f which can be differentiated n times on an
open interval containing a, we can define the Taylor polynomial of order n centered at a, also
called the nth Taylor polynomial centered at a to be

Pn(x) = f (a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)
3!

(x− a)3 + .... +
f (n)(a)

n!
(x− a)n

Properties of Taylor polynomials

Given any function f , where Pn denotes the nth Taylor polynomial centered at a, the following
hold:

1. Pn(x) is a polynomial of degree≤ n,

2. If f (n)(a) 6= 0, then Pn(x) is a polynomial whose degree is exactly n,

3. P0(x) is the constant function f (a),

4. P1(x) = f (a) + f ′(a)(x− a) is the tangent line to f when x = a,

5. Pn(x) is the nth partial sum of the Taylor series of f centered at a, therefore

lim
n→∞

Pn(x) =
∞

∑
n=0

f (n)(a)
n!

(x− a)n,

if the limit exists.

Example 2.3.8. f (x) = ex, a = 0, recall that the Taylor series of f is

∞

∑
n=0

xn

n!
= 1 + x + x2/2 + x3/(3!) + x4/(4!) + .....
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Given this, we see that

P0(x) = 1, P1(x) = 1 + x, P2(x) = 1 + x + x2/2, P3(x) = 1 + x + x2/2 + x3/(3!),

....Pn(x) = 1 + x + x2/2 + x3/(3!) + ..... + xn/(n!).

Next, we turn to the problem of determining whether the Taylor series of a function f

converges to f , or to something else. To do this, we introduce a new function, called the nth
remainder, which measures the difference between the original function f and its nth Taylor
polynomial

Definition 2.3.5. Let f be infinitely differentiable on (a− R, a + R) and let Pn be the nth
Taylor polynomial of f , centered at x = a. Define the nth remainder (of f centered at a) to
be the function

Rn(x) = f (x)− Pn(x).

Example 2.3.9. 1. f (x) = ex, a = 0, recall that P2(x) = 1 + x + x2/2. In the picture
below, f is graphed in black, P2 is graphed in red, and R2(2) is the length of the blue
line segment

2. g(x) = sin x, a = 0, recall that P5(x) = x− x3/(3!) + x5/(5!). In the picture below,
f is graphed in black, P5 is graphed in red, and R5(4) is the length of the blue line
segment
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Theorem2.3.8. (RemainderTheorem). Let f be infinitely differentiable on (a−R, a+R)

and let Pn and Rn be the nth Taylor polynomial and nth remainder of f , centered at x = a.

Then if lim
n→∞

Rn(x) = 0, we have

f (x) =
n

∑
n=0

f (n)(a)
n!

(x− a)n,

i.e. f is equal to its Taylor series on (a− R, a + R).

Proof. Recall that Pn(x) is the nth partial sum of the Taylor series of f . Therefore, since any
infinite series is defined to be the limit of its partial sums, we have

n

∑
n=0

f (n)(a)
n!

(x− a)n = lim
n→∞

Pn(x) = lim
n→∞

( f (x)− Rn(x)) (by definition of Rn)

= f (x)− lim
n→∞

Rn(x)

= f (x). (by hypothesis)

�The Remainder Theorem sufficiently (for our purposes) answers (at least theoretically)
the second main question related to Taylor series, because it gives a condition under which
the Taylor series of f converges to f itself. In particular, the Remainder Theorem tells us
that to show an infinitely differentiable function is equal to its Taylor series, we need only to
show that lim

n→∞
Rn(x) = 0. However, the definition of Rn(x) alone is insufficient to evaluate

this limit. We need an alternate representation of the nth remainders which will allow us
to show that lim

n→∞
Rn(x) = 0. To get this alternate representation, we first recall a theorem

from Calculus I

Theorem 2.3.9. (Mean Value Theorem (MVT)). Let f be differentiable on the interval
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[a, x]. Then, there exists a z ∈ (a, x) such that

f (x)− f (a)
x− a

= f ′(z)

Theorem 2.3.10. (Taylor’s Theorem). Suppose f can be differentiated n + 1 times in an

open interval (a− R, a + R) (where R > 0). Then, for all x ∈ (a− R, a + R) and all n ≥ 0,

there exists a z between a and x such that

Rn(x) =
f (n+1)(z)
(n + 1)!

(x− a)n+1.

Proof. First, a remark: this proof will use the Mean Value Theorem. The proof of the
Mean Value Theorem is deep; take an advanced calculus course if you want to see that.

Now, let’s prove the theorem. Fix x ∈ (a− R, a + R) and recall that Rn(x) = f (x)− Pn(x).

Define a new function g, whose input variable will be called t, by setting g(t) equal to

f (x)−
[

f (t) + f ′(t)(x− t) +
f ′′(t)

2!
(x− t)2 + ... +

f (n)(t)
n!

(x− t)n

]
− Rn(x)

(x− t)n+1

(x− a)n+1 .

Observe that g(a) = 0 and g(x) = 0. Now apply the Mean Value Theorem to g to find a point
z between a and x such that

g′(z) =
g(x)− g(a)

x− a
=

0− 0
x− a

= 0,

Last, evaluate the derivative of g. We have

g′(z) =
d
dt

g(t) |t=z

=
(

0−
[

f ′(t) + ( f ′′(t)(x− t)− f ′(t)) +
(

f ′′′(t)/(2!)(x− t)2 − f ′′(t)(x− t)
)
+

...

+

(
f (n+1)(t)

n!
(x− t)n − f (n)(t)

(n− 1)!
(x− t)n+1

)]
+

Rn(x)
(x− a)n+1 (n + 1)(x− t)n

)∣∣∣∣
t=z

notice that the terms inside the brackets cancel out to leave

g′(z) = − f (n+1)(t)
n!

(x− t)n +
Rn(x)

(x− a)n+1 (n + 1)(x− t)n.
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Since g′(z) = 0, we have

0 = − f (n+1)(t)
n!

(x− t)n +
Rn(x)

(x− a)n+1 (n + 1)(x− t)n ⇔ Rn(x) =
f (n+1)(t)
(n + 1)!

(x− a)n+1.

�
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