
Functioning and Performance of

Processors

Computer Architecture

Riad Bourbia

Computer Sciences department

Guelma University

Presentation Outline

Processor Characteristics
• Instruction Execution Cycles
• Memory Access Models

Processor Performance
• Clock Frequency
• Cache Memory
• Pipeline

Characteristics of a Processor

Instruction Set

Complex: CISC (Complex Instruction Set Computing)

Features: Numerous complex instructions, often requiring multiple clock

cycles to execute.

Examples: Intel and AMD processors (x86 family).

Reduced: RISC (Reduced Instruction Set Computing)

Features: Fewer instructions, designed to execute in a few clock cycles.

Examples: Oracle Sparc and IBM PowerPC.

Architecture Complexity
The number of transistors: The higher the transistor count, the more instructions

the processor can execute per second.

Memory Elements (Register Bank, Cache Memory)

Characteristics of a Processor

 Number of Bits Processed per Instruction (32 or 64 bits)
• Defines the size of the processor registers.
• In 64-bit architecture, integers and addresses increase from 32 bits (4 bytes) to

64 bits (8 bytes).

Maximum Clock Speed
• The higher the clock speed, the more instructions the processor can

execute per second.

 1 CPU = Multiple Functional Units
o Bus Management Unit (I/O Units)

o Instruction Unit (Control Unit)
o Execution Unit
• Contains one or more Arithmetic Logic Units (ALUs) for integer and logical

operations.
• May also include one or more Floating Point Units (FPUs) for handling floating-

point arithmetic operations

Characteristics of a Processor

A Processor is Composed of Two Parts:

1.The Datapath
1. Responsible for processing data.
2. Includes:

1.Registers: Temporary storage for
data.

2.Functional Units: Such as an
Arithmetic and Logic Unit (ALU).

3.Switching Mechanism: For
transferring and manipulating data.

2.The Control Unit
1. Responsible for sequencing operations to

be performed by the datapath.
2. Operates based on:

1.External Inputs.
2.Results of Previous Operations.

Instruction Execution Cycles

Address Instruction

80000 add $1, $2, $3

80004 ...

1. Fetch the instruction to execute

• Place PC into RA (Address Register).

• Send a read command to the memory.

• Place the content of RD (Data Register) into RI (Instruction Register).

RI: add $1, $2, $3

2. Increment the Program Counter (PC)

• Either PC has an incrementer built in.

• Or the ALU is used.

PC: 80004

1. Fetch Cycle

PC: 80000

2. Instruction Decoding (Decoder)
• Identification of an addition between two registers with the result placed in a

register.

3. Data Preparation (Sequencer)
• The contents of registers $2 and $3 are placed into the two input registers of

the ALU.

4. Determining What to Do (Sequencer)
• Sending the signal for the addition operation to the ALU.

5. Performing the Operation (Sequencer)
• The ALU adds the two operands and places the result in its output register.
• The content of the ALU output register is transferred to register $1.

Instruction Execution Cycles

Datapath

A datapath is defined by:

• The set of components required for the execution of an instruction:
PC, ALU, register bank, memory, etc.

• Links between these components: data flow, read/write signals,
multiplexing of shared units, etc.

Depending on the instructions, the required components and the existing
links between them vary.

Datapath

A datapath has two main parts:

• A register block that stores the data to be processed and the results of previous
operations; and,

• Functional units to perform operations on the data.

• Register block (Bloc de registres): Responsible for loading and reading registers.

• Functional units (Unités fonctionnelles): Responsible for operations and status

management.

Memory Access Models

The processor executes operations with operands as parameters.

Several combinations are possible:

Example with an addition operation:

A=B+C Where A,B and C are values located in main memory.

Questions:

• Can they be accessed directly?
• Should they first be placed into general-purpose registers?
• Should they be placed in the ALU’s accumulator?

General Memory Access Models:
Notation: (m,n) where:
m: Maximum number of operands per operation (e.g., addition).
n : Number of operands that can be accessed directly from main memory
for a computation.

Memory-Memory Model (3,3)

3 operands, all directly accessible in memory.

Memory-Accumulator Model (1,1)

• The LOAD instruction places the content read into the accumulator

register of the ALU.

• The accumulator holds the result after the calculation.

• STORE places it at the specified memory address.

ADD @A, @B, @C

LOAD @B

ADD @C

STORE @A

Memory Access Models

mailto:@A
mailto:@B
mailto:@C
mailto:@B
mailto:@C
mailto:@A

Memory-Register Model (2,1)

Variant (2,0) possible with ADD R1, R2

 Stack Model (0,0)

Use of a stack to store operands and results.

;R1 = content at address B
; R1 = R1 + content at address C
; Store the content of R1 at address A

LOAD R1, @B

ADD R1, @C

STORE R1, @A

PUSH

PUSH

ADD

@B

@C

POP @A

Memory Access Models

mailto:@B
mailto:@C
mailto:@A
mailto:@B
mailto:@C
mailto:@A

Register-Register Model (3,0):
• No direct access to memory for a calculation operation.
• Everything passes through registers.

• Typical Architecture of RISC Processors
• Currently the dominant architecture.
• Also called the load-store model.

R1,

R2,

@B

@C
LOAD

LOAD

ADD R3, R1, R2

STORE R3, @A

Memory Access Models

mailto:@B
mailto:@C
mailto:@A

Processor Performance

• Ongoing Efforts to Enhance CPU Performance

Evolution of Architectures : Key points of this evolution:
1. Operating frequency
2. Cache memory
3. Parallelism and optimization of instruction sequences

• Pipeline
• Superscalar and multi-core architectures

Each point influences another positively or negatively.
• Search for the best compromise.

1. Operating Frequency (Clock Speed)

The clock period or cycle time (Tc) is essentially the time for an ALU
operation. The reciprocal of the cycle time is the frequency. If the unit
of time for the cycle is seconds, the frequency is in Hertz.

For example, a processor clocked at 500 MHz has a clock period:

Instruction Execution Time: CPU Cycle
• Idea: Reduce this cycle.
• Increase the operating frequency.

Advantages:
• More instructions executed in less time.

Disadvantages:
• Technological and physical issues:

• Heat dissipation.
• Requires processor cooling, which has its limits.

Performance Indicator of the Central Processing Unit (CPU)

Two parameters can be used to measure a processor's performance:

1. Response Time or Execution Time:

• The elapsed time between the start and the end of a task's

execution.

• Response Time = CPU Time + Waiting Time (I/O, OS scheduling, etc.)

2. Throughput:

• The total amount of work completed within a given period of time.

Clock cycle = Clock period = 1 / Clock rate

Clock rate = Clock frequency = Cycles per second

– 1 Hz = 1 cycle/sec 1 KHz = 103 cycles/sec

– 1 MHz = 106 cycles/sec 1 GHz = 109 cycles/sec

– 2 GHz clock has a cycle time = 1/(2×109) = 0.5 nanosecond (ns)

We often use clock cycles to report CPU execution time

Clock Cycles

Cycle 1 Cycle 2 Cycle 3

CPU Execution Time = CPU cycles × cycle time
Clock rate

CPU cycles
=

 To improve performance, we need to

• Reduce number of clock cycles required by a program, or

• Reduce clock cycle time (increase the clock rate)

To execute a given program, it will require …

– Some number of machine instructions

– Some number of clock cycles

– Some number of seconds

We can relate CPU clock cycles to instruction count

Performance Equation: (related to instruction count)

Performance Equation

CPU cycles = Instruction Count × CPI

Time = Instruction Count × CPI × cycle time

 For some program running on machine X

 X is n times faster than Y

Book’s Definition of Performance

Execution timeX

1
PerformanceX =

PerformanceY

PerformanceX

Execution timeX

Execution timeY
= n=

This ratio indicates how much faster or slower machine X is
compared to machine Y. A value greater than 1 implies that X is
faster than Y, while a value less than 1 indicates that X is slower.

MIPS : Millions Instructions Per Second

 Sometimes used as performance metric

– Faster machine larger MIPS

MIPS specifies instruction execution rate

We can also relate execution time to MIPS

MIPS as a Performance Measure

Instruction Count

Execution Time × 106

Clock Rate

CPI × 106
MIPS = =

Inst Count

MIPS × 106

Inst Count × CPI

Clock Rate
Execution Time = =

2. Cache Memory

Why? The processor requires a sustained flow of instruction
and data reading.

 To avoid having to wait idly

Use of cache memory.

Cache memory holds a copy of the original data when retrieving or

computing it is costly in terms of access time compared to accessing

the cache. Once the data is stored in the cache, it is accessed directly

from the cache rather than being retrieved or recalculated, thereby

reducing the average access time.

In microprocessors, several levels of cache are differentiated, often
numbering three:

• Level 1 cache (L1): The fastest and smallest cache (data cache
may be separate from instruction cache).

• Level 2 cache (L2): Slower but larger than L1.
• Level 3 cache (L3): Even slower but significantly larger than L2.

These caches may be located inside or outside the microprocessor.

2. Cache Memory

Entrées Desserts Plats Caisse

Meal Service Chain

3. Pipeline

Pipeline Principle Explained with an Example

University Restaurant : You pass, in order, by 4 stations:
• A display for appetizers
• A display for desserts
• A display for main dishes
• A cash register

Pipeline

2 Modes of Use for Serving a Meal

 One person at a time through the entire service chain

• When the person has passed through the entire chain and exited,

another person enters to be served.

 Multiple people at the same time, staggered

• One person at each display/station.

• A person moves to the next station when it is free and they have

finished with their current station.

Pipeline

 Advantages of the Second Mode

• Multiple people are served at the same time.

• Time-saving: more people pass through in the same amount of time.

• Better management of stations: always in use.

 Disadvantages of the Second Mode

• More difficult to "turn back" in the station chain.

• Requires additional synchronization and stations whose processing

times are similar for better optimization.

Pipeline

In a processor, the use of a pipeline for executing an operation. An operation
consists of several sub-operations:

• Pipeline for executing these sub-operations.
• A sub-operation uses a sub-unit of the processor that is not used by other

sub-operations (if possible...).

MIPS Processor : Five stages, one cycle per stage

1. IF: Instruction Fetch from instruction memory

2. ID: Instruction Decode, register read

3. EX: Execute operation, calculate load/store address or J/Br address

4. MEM: Memory access for load and store

5. WB: Write Back result to register

Pipeline

Significant gain using the pipeline
• Without: Sequential execution of 2 instructions in 10 cycles.
• With: Parallel execution of 5 instructions in 9 cycles.
• Theoretical gain, as there are many practical problems.
• For optimization: Transition time in each stage should be identical (or

very close).

Staggered execution of multiple instructions at the same time

Pipeline - Depth

In the context of processors, the pipeline depth refers to the number of
stages or steps in the pipeline. Each stage performs a specific part of the
instruction execution process.

• Currently in practice: Around 15 stages
• Examples of pipeline depths (number of stages)
• Intel Processors:

• i3, i5, i7: 14
• Core 2 Duo and Mobile: 14 and 12
• P4 Prescott: 31
• P4 (before Prescott architecture): 20
• Intel P3: 10

• AMD Processors:
• K10: 16
• Athlon 64: 12
• AMD Athlon XP: 10

• RISC-type Processors:
• Sun UltraSparc IV: 14
• IBM Power PC 970: 16

Pipeline - Hazards

In the context of processor pipelines, hazards are situations that can prevent the
next instruction in the pipeline from executing during its designated clock cycle.
Hazards lead to delays, known as pipeline stalls. There are three main types of
hazards:
1. Data Hazards:
Occur when instructions depend on the result of previous instructions that
haven’t been completed yet.
• Example: An instruction needs to use a value that hasn’t been calculated yet.

2. Control Hazards:
Arise from changes in the control flow, such as jumps or branches.
• Example: A branch prediction turns out to be incorrect, and the pipeline

must be flushed and restarted with the correct instructions.
3. Structural Hazards:
Happen when hardware resources are insufficient to execute all instructions in
the pipeline simultaneously.
• Example: Multiple instructions need to access the same memory or register

at the same time.

Hazards complicate pipeline control and limit performance

Structural Hazards

• Problem

– Attempt to use the same hardware resource by two different

instructions during the same clock cycle

• Example

– Writing back ALU result in stage 4

– Conflict with writing load data in stage 5

WB

WB

EX

ID

WB

EX MEM

IF ID

IF

TimeCC1 CC4 CC5 CC6 CC7 CC8 CC9CC2 CC3

EX

ID

IF

MEM

EX

ID

IF

lw $t6, 8($s5)

ori $t4, $s3, 7

sub $t5, $s2, $s3

sw $s2, 10($s3)I
ns

tr
uc

ti
on

s

Structural Hazard

Two instructions are

attempting to write the

register file during

same cycle

Resolving Structural Hazards

• Serious Hazard:

– Hazard cannot be ignored

• Solution 1: Delay Access to Resource

– Must have mechanism to delay instruction access to resource

– Delay all write backs to the register file to stage 5

• ALU instructions bypass stage 4 (memory) without doing anything

• Solution 2: Add more hardware resources (more costly)

– Add more hardware to eliminate the structural hazard

– Redesign the register file to have two write ports

• First write port can be used to write back ALU results in stage 4

• Second write port can be used to write back load data in stage 5

• Dependency between instructions causes a data hazard

• The dependent instructions are close to each other

– Pipelined execution might change the order of operand access

• Read After Write – RAW Hazard

– Given two instructions I and J, where I comes before J

– Instruction J should read an operand after it is written by I

– Called a data dependence in compiler terminology

I: add $s1, $s2, $s3 # $s1 is written

J: sub $s4, $s1, $s3 # $s1 is read

– Hazard occurs when J reads the operand before I writes it

Data Hazards

DMReg

IM

Reg

ALU

IM

DM

Reg

Reg

ALU

IM

DM

Reg

Reg

ALU DM

Reg

ALU

Reg

DM

IM

Reg

ALU

IM

Time (cycles)

Pr
og

ra
m

 E
x
e
cu

ti
on

 O
rd

e
r

value of $s2

sub $s2, $t1, $t3

CC1
10

CC2

add $s4, $s2, $t5

10

CC3

or $s6, $t3, $s2

10

CC4

and $s7, $t4, $s2

10

CC6
20

CC7
20

CC8
20

CC5

sw $t8, 10($s2)

10

Example of a RAW Data Hazard

• Result of sub is needed by add, or, and, & sw instructions

• Instructions add & or will read old value of $s2 from reg file

• During CC5, $s2 is written at end of cycle, old value is read

RegReg

Solution 1: Stalling the Pipeline

• Three stall cycles during CC3 thru CC5 (wasting 3 cycles)

– The 3 stall cycles delay the execution of add and the fetching of or

– The 3 stall cycles insert 3 bubbles (No operations) into the ALU

• The add instruction remains in the second stage until CC6

• The or instruction is not fetched until CC6

DM

Reg

RegReg

Time (in cycles)

I
ns

tr
uc

ti
on

 O
rd

e
r value of $s2

CC1
10

CC2
10

CC3
10

CC4
10

CC6
20

CC7
20

CC8
20

CC5
10

add $s4, $s2, $t5 IM

or $s6, $t3, $s2 IM ALU

ALU Reg

sub $s2, $t1, $t3 IM Reg ALU DM Reg

CC9
20

DM

stall stall stall

DM

Reg

Reg

Reg

Reg

Reg

Time (cycles)

Pr
og

ra
m

 E
x
e
cu

ti
on

 O
rd

e
r

value of $s2

sub $s2, $t1, $t3 IM

CC1
10

CC2

add $s4, $s2, $t5 IM

10

CC3

or $s6, $t3, $s2

ALU

IM

10

CC4

and $s7, $s6, $s2

ALU

IM

10

CC6

Reg

DM

ALU

20

CC7

Reg

DM

ALU

20

CC8

Reg

DM

20

CC5

sw $t8, 10($s2)

Reg

DM

ALU

IM

10

Solution 2: Forwarding ALU Result

• The ALU result is forwarded (fed back) to the Register File Output
– No bubbles are inserted into the pipeline and no cycles are wasted

• ALU result is forwarded from ALU, MEM, and WB stages

RAW Hazard Detection

• Current instruction is being decoded in the Decode stage

• Previous instruction is in the Execute stage

• Second previous instruction is in the Memory stage

• Third previous instruction is in the Write Back stage

If ((Rs != 0) and (Rs == Rd2) and (EX.RegWr)) ForwardA = 1

Else if ((Rs != 0) and (Rs == Rd3) and (MEM.RegWr)) ForwardA = 2

Else if ((Rs != 0) and (Rs == Rd4) and (WB.RegWr)) ForwardA = 3

Else ForwardA = 0

If ((Rt != 0) and (Rt == Rd2) and (EX.RegWr)) ForwardB = 1

Else if ((Rt != 0) and (Rt == Rd3) and (MEM.RegWr)) ForwardB = 2

Else if ((Rt != 0) and (Rt == Rd4) and (WB.RegWr)) ForwardB = 3

Else ForwardB = 0

Reg

Reg

Reg

Time (cycles)

Pr
og

ra
m

 O
rd

e
r

CC2

add $s4, $s2, $t5

Reg

IF

CC3

or $t6, $t3, $s2

ALU

IF

CC6

Reg

DM

ALU

CC7

Reg

Reg

DM

CC8

Reg

lw $s2, 20($t1) IF

CC1 CC4

and $t7, $s2, $t4

DM

ALU

IF

CC5

DM

ALU

Load Delay

• Unfortunately, not all data hazards can be forwarded

– Load has a delay that cannot be eliminated by forwarding

• In the example shown below …

– The LW instruction does not read data until end of CC4

– Cannot forward data to ADD at end of CC3 - NOT possible

However, load can

forward data to 2nd next

and later instructions

Regor $t6, $s3, $s2 IM DM RegALU

RegALU DMReg

add $s4, $s2, $t5 IM

Reglw $s2, 20($s1) IM

stall

ALU

bubble bubble bubble

DM Reg

Stall the Pipeline for one Cycle

• ADD instruction depends on LW stall at CC3

– Allow Load instruction in ALU stage to proceed

– Freeze PC and Instruction registers (NO instruction is fetched)

– Introduce a bubble into the ALU stage (bubble is a NO-OP)

• Load can forward data to next instruction after delaying it

Time (cycles)

Pr
og

ra
m

 O
rd

e
r

CC2 CC3 CC6 CC7 CC8CC1 CC4 CC5

lw $s2, 8($s1) MEM WBEXIDStallIF

lw $s1, ($t5) MEM WBEXIDIF

Showing Stall Cycles

• Stall cycles can be shown on instruction-time diagram

• Hazard is detected in the Decode stage

• Stall indicates that instruction is delayed

• Instruction fetching is also delayed after a stall

• Example:

add $v0, $s2, $t3 - WBEXIDStallIF

sub $v1, $s2, $v0 - WBEXIDIF

TimeCC1 CC4 CC5 CC6 CC7 CC8 CC9CC2 CC3 CC10

Data forwarding is shown using green arrows

Code Scheduling to Avoid Stalls

• Compilers reorder code in a way to avoid load stalls

• Consider the translation of the following statements:

A = B + C; D = E – F; // A thru F are in Memory

• Slow code:

lw $t0, 4($s0) # &B = 4($s0)

lw $t1, 8($s0) # &C = 8($s0)

add $t2, $t0, $t1 # stall cycle

sw $t2, 0($s0) # &A = 0($s0)

lw $t3, 16($s0) # &E = 16($s0)

lw $t4, 20($s0) # &F = 20($s0)

sub $t5, $t3, $t4 # stall cycle

sw $t5, 12($0) # &D = 12($0)

 Fast code: No Stalls

lw $t0, 4($s0)

lw $t1, 8($s0)

lw $t3, 16($s0)

lw $t4, 20($s0)

add $t2, $t0, $t1

sw $t2, 0($s0)

sub $t5, $t3, $t4

sw $t5, 12($s0)

• Instruction J should write its result after it is read by I

• Called anti-dependence by compiler writers

I: sub $t4, $t1, $t3 # $t1 is read

J: add $t1, $t2, $t3 # $t1 is written

• Results from reuse of the name $t1

• NOT a data hazard in the 5-stage pipeline because:

– Reads are always in stage 2

– Writes are always in stage 5, and

– Instructions are processed in order

• Anti-dependence can be eliminated by renaming

– Use a different destination register for add (eg, $t5)

Name Dependence: Write After Read

Name Dependence: Write After Write

• Same destination register is written by two instructions

• Called output-dependence in compiler terminology

I: sub $t1, $t4, $t3 # $t1 is written

J: add $t1, $t2, $t3 # $t1 is written again

• Not a data hazard in the 5-stage pipeline because:

– All writes are ordered and always take place in stage 5

• However, can be a hazard in more complex pipelines

– If instructions are allowed to complete out of order, and

– Instruction J completes and writes $t1 before instruction I

• Output dependence can be eliminated by renaming $t1

• Read After Read is NOT a name dependence

Control Hazards

• Jump and Branch can cause great performance loss

• Jump instruction needs only the jump target address

• Branch instruction needs two things:

– Branch Result Taken or Not Taken

– Branch Target Address

• PC + 4 If Branch is NOT taken

• PC + 4 + 4 × immediate If Branch is Taken

• Jump and Branch targets are computed in the ID stage

– At which point a new instruction is already being fetched

– Jump Instruction: 1-cycle delay

– Branch: 2-cycle delay for branch result (taken or not taken)

1-Cycle Jump Delay

• Control logic detects a Jump instruction in the 2nd Stage

• Next instruction is fetched anyway

• Convert Next instruction into bubble (Jump is always taken)

J L1 IF

cc1

Next instruction

. . .

L1: Target instruction

cc2

ID

IF

Jump

Target

Addr

cc4 cc5 cc6 cc7cc3

BubbleBubble BubbleBubble

IF Reg DMALU Reg

2-Cycle Branch Delay

• Control logic detects a Branch instruction in the 2nd Stage

• ALU computes the Branch outcome in the 3rd Stage

• Next1 and Next2 instructions will be fetched anyway

• Convert Next1 and Next2 into bubbles if branch is taken

Beq $t1,$t2,L1 IF

cc1

Next1

cc2

Reg

IF

Next2

cc4 cc5 cc6 cc7

IF Reg DMALU

BubbleBubble Bubble

BubbleBubble BubbleBubble

L1: target instruction

cc3

Branch

Target

Addr

ALU

Reg

IF

Predict Branch NOT Taken

• Branches can be predicted to be NOT taken

• If branch outcome is NOT taken then

– Next1 and Next2 instructions can be executed

– Do not convert Next1 & Next2 into bubbles

– No wasted cycles

Beq $t1,$t2,L1 IF

cc1

Next1

cc2

Reg

IF

Next2

cc3

NOT TakenALU

Reg

IF Reg

cc4 cc5 cc6 cc7

ALU DM

ALU DM

Reg

Reg

Jump and Branch Impact on CPI

• Base CPI = 1 without counting jump and branch

• Unconditional Jump = 5%, Conditional branch = 20%

• 90% of conditional branches are taken

• Jump kills next instruction, Taken Branch kills next two

• What is the effect of jump and branch on the CPI?

Solution:

• Jump adds 1 wasted cycle for 5% of instructions = 1 × 0.05

• Branch adds 2 wasted cycles for 20% × 90% of instructions

= 2 × 0.2 × 0.9 = 0.36

• New CPI = 1 + 0.05 + 0.36 = 1.41 (due to wasted cycles)

Branch Hazard Alternatives

• Predict Branch Not Taken (previously discussed)

– Successor instruction is already fetched

– Do NOT kill instructions if the branch is NOT taken

– Kill only instructions appearing after Jump or taken branch

• Delayed Branch

– Define branch to take place AFTER the next instruction

– Compiler/assembler fills the branch delay slot (for 1 delay cycle)

• Dynamic Branch Prediction

– Loop branches are taken most of time

– Must reduce the branch delay to 0, but how?

– How to predict branch behavior at runtime?

• Define branch to take place after the next instruction

• MIPS defines one delay slot

– Reduces branch penalty

• Compiler fills the branch delay slot

– By selecting an independent instruction

from before the branch

– Must be okay to execute instruction in the

delay slot whether branch is taken or not

• If no instruction is found

– Compiler fills delay slot with a NO-OP

Delayed Branch

label:

. . .

add $t2,$t3,$t4

beq $s1,$s0,label

Delay Slot

label:

. . .

beq $s1,$s0,label

add $t2,$t3,$t4

• New meaning for branch instruction

– Branching takes place after next instruction (Not immediately!)

• Impacts software and compiler

– Compiler is responsible to fill the branch delay slot

• However, modern processors are deeply pipelined

– Branch penalty is multiple cycles in deep pipelines

– Multiple delay slots are difficult to fill with useful instructions

• MIPS used delayed branching in earlier pipelines

– However, delayed branching lost popularity in recent processors

– Dynamic branch prediction has replaced delayed branching

Drawback of Delayed Branching

Zero-Delayed Branching

• How to achieve zero delay for a jump or a taken branch?

– Jump or branch target address is computed in the ID stage

– Next instruction has already been fetched in the IF stage

Solution

• Introduce a Branch Target Buffer (BTB) in the IF stage

– Store the target address of recent branch and jump instructions

• Use the lower bits of the PC to index the BTB

– Each BTB entry stores Branch/Jump address & Target Address

– Check the PC to see if the instruction being fetched is a branch

– Update the PC using the target address stored in the BTB

In Summary

• Three types of pipeline hazards

– Structural hazards: conflicts using a resource during same cycle

– Data hazards: caused by data dependencies between instructions

– Control hazards: caused by branch and jump instructions

• Hazards limit the performance and complicate the design

– Structural hazards: eliminated by careful design or more hardware

– Data hazards are eliminated by forwarding

– However, load delay cannot be eliminated and stalls the pipeline

– Delayed branching reduces branch delay but needs compiler support

– BTB with branch prediction can reduce branch delay to zero

– Branch misprediction should kill the wrongly fetched instructions

