
03/12/2024

1

B Y

P R . C H . B E N C H E R I E T

03/12/2024The Interrupt Systems

1

The The Interrupt Interrupt SystemsSystems

ChapterChapter 44
22èmeème Ingénieur InformatiqueIngénieur Informatique

Plan

03/12/2024The Interrupt Systems

2

1. Introduction

2. What is an Interrupt?

3. The Different Causes of Interrupts

4. Interrupt Recognition

5. Vectorized and Non-Vectorized Interrupts

6. Detection and Handling of an Interrupt in a Simple System

7. Hierarchical Interrupt Systems

8. Detection and Handling of an Interrupt in a Hierarchical System

9. Interrupt Level Encoding

1. Introduction

03/12/2024The Interrupt Systems

3

 The interrupt mechanism forms the basis of the input/output module in
operating systems.

 Interrupting a running program to handle a more urgent task.

 Taking asynchronous events into account.

Objectives

 Detect an unexpected event: alarm, power outage, etc.

 Avoid constant polling: e.g., analogy with a telephone ringing.

 To execute a subroutine called an interrupt service routine.

2. What is an Interrupt?

03/12/2024The Interrupt Systems

4

An interrupt is a mechanism that allows the execution of a
process to be interrupted following an external or internal
event, transferring control to a routine called an "interrupt
routine" (handling the interrupt).

3. The Different Causes of Interrupts

03/12/2024The Interrupt Systems

5

Interrupts can originate from various sources and are classified into three types:

External (Hardware) Interrupts

 These are independent of the process and are triggered by a peripheral device (e.g., keyboard,
I/O port, printer, etc.).

 They help manage access conflicts to the processor.

Internal Interrupts (Trap or Exception)

 These occur due to internal processor errors such as overflow, division by zero, page faults, etc.

System Calls

 These happen when a running program in an operating system requests kernel services (e.g., I/O
requests, reading or writing files, memory allocation, etc.).

 This is also referred to as an external software interrupt, generated by a program, such as through
the assembly instruction INT.

4. Interrupt Recognition

03/12/2024The Interrupt Systems

6

Different Physical Methods for Determining the Source of an Interrupt (IT)

Multi-level Interrupts

 Each device is connected to a specific interrupt input on the microprocessor.

Advantages

 Technically straightforward solution.

Disadvantages

 Expensive in terms of processor input pins.

03/12/2024

2

4. Interrupt Recognition

03/12/2024The Interrupt Systems

7

Single-Line Interrupt

Advantage

 Only one interrupt line is required on the processor.

Disadvantage

 Requires polling of peripherals to identify the interrupt source.

5. Vectorized and Non-Vectorized Interrupts

03/12/2024The Interrupt Systems

8

There are two main types of interrupts, based on how the processor handles their
processing:

Non-Vectorized Interrupts: In this case, the processor does not have a specific
address for each type of interrupt. A single interrupt routine is used (called the
general or common routine). This routine identifies the source of the interrupt,
often by checking a status register or polling the relevant peripherals.

Vectorized Interrupts: Each type of interrupt has a specific address (vector) that
points to its own processing routine. This makes the processing faster, as the
processor immediately knows which routine to execute.

5. Vectorized and Non-Vectorized Interrupts

03/12/2024The Interrupt Systems

9

Why isn't everything Why isn't everything vectorizedvectorized??

 In some simple or older systems, non-vectorized interrupts were
sufficient and easier to implement.

Vectorized interrupts require additional mechanisms (such as a vector
table), which can be costly or unnecessary for some basic devices.

Modern systems often favor vectorized interrupts for their speed and
efficiency.

5.1 Vectorized Interrupt

03/12/2024The Interrupt Systems

10

 A vectorized interrupt, also known as a vectored
interrupt, refers to a mechanism in which an
interrupt is associated with a specific interrupt
vector.

 Each type of interrupt has a unique interrupt
number that is used as an index in a table called the
interrupt vector table.

 This interrupt vector points to the appropriate
interrupt handler.

5.1 Vectorized Interrupt

03/12/2024The Interrupt Systems

11

The process of handling vectorized interrupts can be described in several steps:

1. Interrupt Generation: An event, such as a request from an input/output device, generates
an interrupt.

2. Source Identification: The interrupt number is associated with the specific source of the
interrupt. Each interrupt source has a unique interrupt number.

3. Accessing the Interrupt Vector Table: The interrupt number is used as an index to
access the interrupt vector table. This table is typically stored in memory and contains
memory addresses corresponding to the interrupt handlers.

4. Control Transfer: The processor transfers control to the interrupt handler whose address is
indicated in the interrupt vector. This leads to the execution of the code specific to handling
the interrupt.

5. Interrupt Handling: The interrupt handler takes care of processing the event associated
with the interrupt. This may include manipulating data, communicating with the device, or
other necessary actions.

03/12/2024The Interrupt Systems

12

03/12/2024

3

Remarque

03/12/2024The Interrupt Systems

13

 The use of interrupt vectors simplifies the management of different interrupt
sources in a system.

 Each type of interrupt is associated with a specific memory address, making
selective interrupt handling easier.

 This mechanism is commonly used in modern hardware architectures to
efficiently organize interrupt management.

Advantages: The microprocessor immediately recognizes the device that
triggered the interrupt.
Disadvantage: It is necessary to manage priorities (simultaneous deposits of 2
vectors on the b

6. Detection and Handling of an Interrupt in a Simple System

03/12/2024The Interrupt Systems

14

1. Interrupt Detection

2. Context Saving

3. Identifying the Cause of the Interrupt

4. Interrupt Acknowledgment

5. Interrupt Handling

6. Restoring the Context of the Interrupted Program

6. Detection and Handling of an Interrupt in a Simple System

03/12/2024The Interrupt Systems

15

11.. InterruptInterrupt DetectionDetection: This occurs when the processor
identifies that an external or internal event requires
attention. It can be triggered by a signal from a hardware
device, a special software instruction, etc.

22.. ContextContext SavingSaving: Store the current state of the processor,
including register values, the instruction pointer, and other
relevant information. This ensures the interrupted program
can resume execution later without loss of information.

33.. IdentifyingIdentifying thethe CauseCause ofof thethe InterruptInterrupt: This involves
determining the specific source that triggered the interrupt.
It is done by checking specific registers, interrupt tables, or
other dedicated mechanisms.

6. Detection and Handling of an Interrupt in a Simple System

03/12/2024The Interrupt Systems

16

44.. InterruptInterrupt AcknowledgmentAcknowledgment: Inform the
hardware that the processor has acknowledged the
interrupt and is ready to handle it. This may
involve sending a return signal to the interrupt
source.

55.. InterruptInterrupt HandlingHandling: The system executes the
appropriate interrupt handler, which is code
designed to manage the specific event that
triggered the interrupt.

6. Detection and Handling of an Interrupt in a Simple System

03/12/2024The Interrupt Systems

17

66.. RestoringRestoring thethe ContextContext ofof thethe InterruptedInterrupted
ProgramProgram:: Once the interrupt handling is
complete, restoring the context involves retrieving
the saved state of the processor (step 2) to resume
the execution of the interrupted program from
where it was paused.

7. Hierarchical Interrupt Systems

03/12/2024The Interrupt Systems

18

InterruptInterrupt

Inhibition

Masking

validation

03/12/2024

4

7. Hierarchical Interrupt Systems

03/12/2024The Interrupt Systems

19

Interrupt Interrupt InhibitionInhibition

It is the temporary disabling of interrupts.

When an interrupt is inhibited, the processor temporarily ignores
interrupt signals, thus preventing their handling during this period.

Inhibition is often used to ensure data integrity in critical situations
or during the execution of certain routines that are sensitive to
interrupts.

7. Hierarchical Interrupt Systems

03/12/2024The Interrupt Systems

20

Interrupt Interrupt MaskingMasking

Occurs when certain interrupts are temporarily disabled or ignored by
the system, usually based on their priority level.

Lower-priority interrupts may be masked during the handling of a
higher-priority interrupt.

This helps manage the interrupt hierarchy by ensuring that the most
important interrupts are handled first.

7. Hierarchical Interrupt Systems

03/12/2024The Interrupt Systems

21

Interrupt Interrupt ValidationValidation

Occurs when the system decides that the interrupt is valid and must
be processed.

It may be related to checking certain conditions, such as the status
of a device or the presence of a specific event.

Once validated, the interrupt is typically acknowledged, and its
handling can begin.

8. Detection and Handling of an Interrupt in a Hierarchical System

03/12/2024The Interrupt Systems

22

 Interrupt Detection in a Hierarchical System: Involves the recognition of
a disruptive event by the hardware or software. Interrupts are typically
associated with priority levels, and the system responds accordingly, either by
suspending or modifying the ongoing execution.

 Interrupt Handling in a Hierarchical System: Involves the orderly
management of interrupts based on their priority level. The interrupt handling
routines associated with each level are called sequentially, starting with the
highest interrupt level. This ensures a prompt response to the most critical
interrupts.

9. Interrupt Level Encoding

03/12/2024The Interrupt Systems

23

 The encoding of interrupt levels depends on the specific architecture of the
processor.

 Each processor manufacturer may have its own way of representing interrupt
levels in hardware.

Example: For x86, interrupt levels are often encoded using the status register.

 In the status register, the interrupt flag (IF) controls whether hardware
interrupts (maskable) are enabled or disabled.

When the interrupt flag is set to 1, interrupts are enabled, and when the bit is
set to 0, interrupts are disabled.

 The lowest interrupt level (the highest priority level) is generally the highest-
priority hardware interrupt level.

Example 1: Interrupt Hierarchy

03/12/2024The Interrupt Systems

24

The processor has a single INT (interrupt) pin to receive interrupts.
What happens if:
 Two interrupts arrive at the same time?
 An interrupt occurs while another interrupt is being handled?
Note: A priority (level) concept is introduced between interrupts.
Example: 8 levels.

03/12/2024

5

Example 1: Interrupt Hierarchy

03/12/2024The Interrupt Systems

25

What to do if:
Q. Two interrupts arrive at the same time?

A. The one with the highest priority is handled first.
Q. An interrupt occurs while another interrupt is being handled?

A. It interrupts the current processing only if it has a higher priority.

03/12/2024The Interrupt Systems

26

Example 2: Interrupt Hierarchy

5

03/12/2024The Interrupt Systems

27

Example 2: Interrupt Hierarchy

