1. For each of the following power series, find the interval of convergence and the radius of convergence:

(a)
$$\sum_{n=1}^{\infty} (-1)^n n^2 x^n$$

Notice that
$$a_{n+1} = (-1)^{n+1}(n+1)^2 x^{n+1}$$
. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^2 |x|^{n+1}}{n^2 |x|^n} = \lim_{n \to \infty} |x| \frac{n^2 + 2n + 1}{n^2}$

$$=|x|\lim_{n\to\infty}\frac{2n+2}{2n}=|x|\lim_{n\to\infty}\frac{2}{2}=|x|, \text{ so this series converges absolutely for } -1< x<1.$$

Notice when
$$x = 1$$
, we have $\sum_{n=1}^{\infty} (-1)^n n^2 1^n = \sum_{n=1}^{\infty} (-1)^n n^2$ which diverges by the *n*th term test.

Similarly, when
$$x = -1$$
, we have $\sum_{n=1}^{\infty} (-1)^n n^2 (-1)^n = \sum_{n=1}^{\infty} (-1)^2 n n^2 = \sum_{n=1}^{\infty} 1$ which diverges by the *n*th term test.

Hence, the interval of convergence is: (-1,1) and the radius convergence is: R=1.

(b)
$$\sum_{n=1}^{\infty} \frac{2^n}{n^2} (x-3)^n$$

Notice that
$$a_{n+1} = \frac{2^{n+1}}{(n+1)^2} (x-3)^{n+1}$$
. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{2^{n+1} |x-3|^{n+1}}{(n+1)^2} \cdot \frac{n^2}{2^n |x-3|^n}$

$$= \lim_{n \to \infty} |x - 3| \cdot 2 \cdot \frac{n^2 + 2n + 1}{n^2} = 2|x - 3| \lim_{n \to \infty} \frac{2n + 2}{2n} = 2|x - 3| \lim_{n \to \infty} \frac{2}{2} = 2|x - 3|, \text{ so this series converges absolutely when } |x - 3| < \frac{1}{2}, \text{ or for } \frac{5}{2} < x < \frac{7}{2}.$$

Notice when
$$x = \frac{5}{2}$$
, we have $\sum_{n=1}^{\infty} \frac{2^n}{n^2} (-\frac{1}{2})^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ Thus, since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a convergent *p*-series, the original series converges absolutely.

Similarly, when
$$x = \frac{7}{2}$$
, we have $\sum_{n=1}^{\infty} \frac{2^n}{n^2} (\frac{1}{2})^n = \sum_{n=1}^{\infty} \frac{(1)^n}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^2}$, which is a convergent *p*-series.

Hence, the interval of convergence is: $\left[\frac{5}{2}, \frac{7}{2}\right]$ and the radius convergence is: $R = \frac{1}{2}$.

(c)
$$\sum_{n=1}^{\infty} \frac{n^3}{3^n} (x+1)^n$$

Notice that
$$a_{n+1} = \frac{(n+1)^3}{3^{n+1}}(x+1)^{n+1}$$
. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^3|x+1|^{n+1}}{3^{n+1}} \cdot \frac{3^n}{n^3|x+1|^n}$

$$= \frac{1}{3}|x+1| \lim_{n\to\infty} \frac{(n+1)^3}{n^3}, \text{ which, after a few applications of L'Hôpital's Rule, is } \frac{|x+1|}{3}, \text{ so this series converges absolutely when } |x+1| < 3 \text{ or for } -4 < x < 2.$$

Notice when
$$x = -4$$
, we have $\sum_{n=1}^{\infty} \frac{n^3}{3^n} (-3)^n = \sum_{n=1}^{\infty} (-1)^n n^3$, which diverges by the *n*th term test.

Similarly, when
$$x=2$$
, we have $\sum_{n=1}^{\infty} \frac{n^3}{3^n} 3^n = \sum_{n=1}^{\infty} n^3$ which diverges by the *n*th term test.

Hence, the interval of convergence is: (-4,2) and the radius convergence is: R=3.

(d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{10^n}{n!} (x-10)^n$$

Notice that
$$a_{n+1} = (-1)^{n+1} \frac{10^{n+1}}{(n+1)!} (x-10)^{n+1}$$
. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{10^{n+1} |x-10|^{n+1}}{(n+1)!} \cdot \frac{n!}{10^n |x-10|^n} = |x-10| \lim_{n \to \infty} \frac{10}{(n+1)!} = 0$

Hence the interval of convergence is $(-\infty, \infty)$ and $R = \infty$

(e)
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n \cdot 10^n} (x-2)^n$$

Notice that
$$a_{n+1} = (-1)^{n+1} \frac{1}{(n+1)10^{n+1}} (x-2)^{n+1}$$
. Then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{|x-2|^{n+1}}{(n+1)10^{n+1}} \cdot \frac{n10^n}{|x-2|^n}$ $= \frac{1}{10} |x-2| \lim_{n \to \infty} \frac{n}{n+1} = \frac{1}{10} |x-2|$, so this series converges absolutely when $|x-2| < 10$ or for $-8 < x < 12$.

Notice when
$$x = -8$$
, we have $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n \cdot 10^n} (-10)^n = \sum_{n=1}^{\infty} (-1)^n \frac{1}{n} (-1)^n = \sum_{n=1}^{\infty} \frac{1}{n}$, which diverges since it is the

Similarly, when
$$x = 10$$
, we have $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n 10^n} 10^n = \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}$ which converges by the Alternating Series Test.

Hence, the interval of convergence is: (-8, 10] and the radius convergence is: R = 10.

2. Use a known series to find a power series in x that has the given function as its sum:

(a)
$$x \sin(x^3)$$

Recall the Maclaurin series for
$$\sin u = \sum_{n=0}^{\infty} (-1)^n \frac{u^{2n+1}}{(2n+1)!}$$

Therefore,
$$\sin(x^3) = \sum_{n=0}^{\infty} (-1)^n \frac{(x^3)^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} (-1)^n \frac{(x)^{6n+3}}{(2n+1)!}.$$

Hence
$$x \sin(x^3) = \sum_{n=0}^{\infty} (-1)^n \frac{(x)^{6n+4}}{(2n+1)!}$$

(b)
$$\frac{\ln(1+x)}{x}$$

Recall the Maclaurin series for
$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$$

Therefore,
$$\frac{\ln(1+x)}{x} = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n+1}$$

(c)
$$\frac{x - \arctan x}{x^3}$$

Recall the Maclaurin series for
$$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$$

Therefore,
$$x - \arctan(x) = x - \left(x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots\right) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{2n+1}$$

Hence
$$\frac{x - \arctan x}{x^3} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-2}}{2n+1}$$

- 3. Use a power series to approximate each of the following to within 3 decimal places:
 - (a) $\arctan \frac{1}{2}$

Notice that the Maclaurin series $\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$ is an alternating series satisfying the hypotheses of

the alternating series test when $x = \frac{1}{2}$. Then to find our approximation, we need to find n such that $\frac{(.5)^{2n+1}}{2n \perp 1} < \frac{(.5)^{2n+1}}{(.5)^{2n+1}} < \frac{(.5)^{2n+1}}{(.5)^{$

$$a_0 = \frac{1}{2}$$
, $a_1 = -\frac{1}{24} \approx 0.04667$, $a_3 = \frac{1}{160} = 0.00625$, $a_4 = -\frac{1}{896} \approx -0.001116$, and $a_5 \approx 0.00217$

Hence $\arctan \frac{1}{2} \approx \frac{1}{2} - \frac{1}{24} + \frac{1}{160} - \frac{1}{806} \approx 0.463$

(b) ln(1.01)

Notice that the Maclaurin series $\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$ is an alternating series satisfying the hypotheses of the alternating series test when x = 0.01. Then to find our approximation, we need to find n such that

$$\begin{array}{l}
 n+1 \\
 a_0 = 0.01, \ a_1 = -0.00005
 \end{array}$$

Hence $ln(1.01) \approx 0.010$

(c) $\sin\left(\frac{\pi}{10}\right)$

Notice that the Maclaurin series $\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$ is an alternating series satisfying the hypotheses of the

alternating series test when $x = \frac{\pi}{10}$. Then to find our approximation, we need to find n such that $\frac{(\frac{\pi}{10})^{2n+1}}{(2n+1)!} < .0005$.

$$a_0 = \frac{\pi}{10} \approx 0.314159, \ a_1 \approx -0.0051677, \ a_2 \approx 0.0000255$$

Hence $\sin\left(\frac{\pi}{10}\right) \approx 0.314159 - 0.0051677 \approx 0.309$

- 4. For each of the following functions, find the Taylor Series about the indicated center and also determine the interval of convergence for the series.
 - (a) $f(x) = e^{x-1}, c = 1$

Notice that $f'(x) = e^{x-1}$ and $f''(x) = e^{x-1}$. In fact, $f^{(n)}(x) = e^{x-1}$ for every n.

Then $f^{(n)}(1) = e^0 = 1$ for every n, and hence $a_n = \frac{1}{n!}$ for every n.

Thus
$$e^{x-1} = \sum_{n=0}^{\infty} \frac{(x-1)^n}{n!}$$
.

To find the interval of convergence, notice that $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{|x-1|^{n+1}}{(n+1)!} \cdot \frac{n!}{|x-1|^n} = |x-1| \lim_{n\to\infty} \frac{1}{n+1} = 0$

Thus this series converges on $(-\infty, \infty)$ and $R = \infty$

(b)
$$f(x) = \cos x, c = \frac{\pi}{2}$$

$$f'(x) = -\sin x$$
, $f''(x) = \cos x$, $f'''(x) = \sin x$, $f^4(x) = -\cos x$, and the same pattern continues from there. Therefore, $f\left(\frac{\pi}{2}\right) = \cos\frac{\pi}{2} = 0$ $f'\left(\frac{\pi}{2}\right) = -\sin\frac{\pi}{2} = -1$, $f''\left(\frac{\pi}{2}\right) = -\cos\frac{\pi}{2} = 0$, $f'''\left(\frac{\pi}{2}\right) = \sin\frac{\pi}{2} = 1$, $f^4\left(\frac{\pi}{2}\right) = \cos\frac{\pi}{2} = 0$, and the pattern continues from there.

Therefore, $a_0 = 0$, $a_1 = -1$, $a_2 = 0$, $a_3 = \frac{1}{3!} = \frac{1}{6} \cdots$

Hence the series is:
$$\cos x = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{(2n+1)!} (x - \frac{\pi}{2})^{2n+1}$$

To find the interval of convergence, notice that $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{|x-\frac{\pi}{2}|^{n+1}}{(2n+3)!} \cdot \frac{(2n+1)!}{|x-\frac{\pi}{2}|^n}$

$$= |x - \frac{\pi}{2}| \lim_{n \to \infty} \frac{1}{(2n+3)(2n+2)} = 0$$

Thus this series converges on $(-\infty, \infty)$ and $R = \infty$.

(c)
$$f(x) = \frac{1}{x}$$
, $c = -1$
 $f'(x) = -x^{-2}$, $f''(x) = 2x^{-3}$, $f'''(x) = -6x^{-4}$, so $f^n(x) = (-1)^n x^{-(n+1)}$
Then $f(-1) = -1$, $f'(-1) = -1$, $f''(-1) = -2$, $f'''(-1) = -6$, and $f^n(-1) = -n!$.
Therefore, $a_0 = -1$, $a_1 = -1$, $a_2 = -1$, $a_3 = -1$, and, in fact, $a_n = -1$ for all n .

Hence
$$\frac{1}{x} = \sum_{n=0}^{\infty} (-1)(x-1)^n$$

To find the interval of convergence, notice that $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \frac{(-1)|x-1|^{n+1}}{(-1)|x-1|^n} = |x-1|$, so this series converges absolutely for $0 \le x \le 2$

When x = 0, we have $\sum_{n=0}^{\infty} (-1)(-1)^n$, which diverges by the *n*th term test.

Similarly, when x=2 we have $\sum_{n=0}^{\infty} (-1)(1)^n$, which also diverges by the *n*th term test.

Thus this series converges on (0,2) and R=1.

5. For each of the following functions, find the Taylor Polynomial for the function at the indicated center c. Also find the Remainder term.

(a)
$$f(x) = \sqrt{x}$$
, $c = 1$, $n = 3$.
First, $f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$, $f''(x) = -\frac{1}{4}x^{-\frac{3}{2}}$, $f'''(x) = \frac{3}{8}x^{-\frac{5}{2}}$, and $f^{(4)}(x) = -\frac{15}{16}x^{-\frac{7}{2}}$.
Then $f(1) = 1$, $f'(1) = \frac{1}{2}$, $f''(1) = -\frac{1}{4}$, $f'''(1) = \frac{3}{8}$.
Hence $a_0 = 1$, $a_1 = \frac{1}{2}$, $a_2 = -\frac{1}{8}$, and $a_3 = \frac{1}{16}$
Thus $P_3(x) = 1 + \frac{1}{2}(x - 1) - \frac{1}{8}(x - 1)^2 + \frac{1}{16}(x - 1)^3$
and $R_3(x) = \frac{f^{(4)}(z)}{4!}(x - 1)^4 = \frac{5z^{-\frac{7}{2}}}{128}(x - 1)^4$

(b)
$$f(x) = \ln x, c = 1, n = 4.$$

First, $f'(x) = x^{-1}, f''(x) = -x^{-2}, f'''(x) = 2x^{-3}, f^{(4)}(x) = -6x^{-4}, \text{ and } f^{(5)}(x) = 24x^{-5}.$
Then $f(1) = 0, f'(1) = 1, f''(1) = -1, f'''(1) = 2, \text{ and } f^{(4)}(1) = -6.$
Hence $a_0 = 0, a_1 = 1, a_2 = -\frac{1}{2}, a_3 = \frac{1}{3}, \text{ and } a_4 = -\frac{1}{4}.$
Thus $P_4(x) = 0 + (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 - \frac{1}{4}(x - 1)^4$
and $R_4(x) = \frac{f^{(5)}(z)}{5!}(x - 1)^5 = \frac{24z^{-5}}{120}(x - 1)^5 = \frac{z^{-5}}{5}(x - 1)^5$

(c)
$$f(x) = \sqrt{1+x^2}$$
, $c = 0$, $n = 4$.
First, $f'(x) = x(1+x^2)^{-\frac{1}{2}}$, $f''(x) = (1+x^2)^{-\frac{1}{2}} - x^2(1+x^2)^{-\frac{3}{2}}$, $f'''(x) = -3x(1+x^2)^{-\frac{3}{2}} + 3x^3(1+x^2)^{-\frac{5}{2}}$, $f^{(4)}(x) = -3(1+x^2)^{-\frac{3}{2}} + 18x^2(1+x^2)^{-\frac{5}{2}} - 15x^4(1+x^2)^{-\frac{7}{2}}$, and $f^{(5)}(x) = 45x(1+x^2)^{-\frac{5}{2}} - 150x^3(1+x^2)^{-\frac{7}{2}} + 105x^5(1+x^2)^{-\frac{9}{2}}$
Then $f(0) = 1$, $f'(0) = 0$, $f''(0) = 1$, $f'''(0) = 0$, and $f^{(4)}(0) = -3$.
Hence $a_0 = 1$, $a_1 = 0$, $a_2 = \frac{1}{2}$, $a_3 = 0$, and $a_4 = -\frac{1}{8}$
Thus $P_4(x) = 1 + \frac{1}{2}x^2 - \frac{1}{8}x^4$

and
$$R_4(x) = \frac{f^{(5)}(z)}{5!}x^5 = \frac{45z(1+z^2)^{-\frac{5}{2}} - 150z^3(1+z^2)^{-\frac{7}{2}} + 105z^5(1+z^2)^{-\frac{9}{2}}}{120}x^5$$

6. Estimate each of the following using a Taylor Polynomial of degree 4. Also find the error for your approximation. Finally, find the number of terms needed to guarantee an accuracy or at least 5 decimal places.

a)
$$e^{0.1}$$

Recall that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.
Then $P_4(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$, and $R_4 = \frac{e^z}{5!}x^5$

When x = 0.1, $P_4(x) \approx 1 + 0.1 + 0.005 + 0.0001667 + .000004167 = 1.105170867$

In general,
$$R_n(x) = \frac{f^{(n+1)(z)}}{(n+1)!}x^{n+1} = \frac{e^z}{(n+1)!}(0.1)^{n+1}$$
, where $0 \le z \le 0.1$.

Since e^x is increasing, we need to find n so that $\frac{e^{0.1}}{(n+1)!}(0.1)^{n+1} < 0.000005$

When we use $P_4(x)$, our error is at most $\frac{e^{0.1}}{5!}(0.1)^5 \approx 0.000000092$ (in fact, one would only need $P_3(x)$ to get within 5 decimal places).

(b) $\ln 0.9$

Recall that
$$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$$
.

We will take x = -0.1 so that $\ln(1+x) = \ln(.9)$

Then
$$P_4(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$$
. Also, $f^{(5)}(x) = 24(1+x)^{-5}$.

Therefore,
$$R_4 = \frac{24(1+z)^{-5}}{5!}x^5$$
. In general, $R_n(x) = (-1)^n \frac{(1+z)^{-(n+1)}}{n+1}x^{n+1}$.
When $x = -0.1$, $P_4(x) \approx -0.1 - 0.005 - 0.000333333 - .000025 = -0.105358333$

Since
$$R_n(x) = \frac{f^{(n+1)(z)}}{(n+1)!}x^{n+1} = (-1)^n \frac{(1+z)^{-(n+1)}}{n+1}x^{n+1}$$
, where $-0.1 \le z \le 0$.

Since $\ln(1+x)$ is negative and increasing when -1 < x < 0, we need to find n so that $(-1)^n \frac{(1-1)^{-(n+1)}}{n+1} x^{n+1} < 0$ 0.000005

When we use $P_4(x)$, our error is at most $\frac{(1-.1)^{-(5)}}{\epsilon}(0.1)^5 \approx 0.000084675$.

If we use $P_5(x)$, our error is at most $\frac{(1-.1)^{-(6)}}{6}(0.1)^6 \approx 0.000000314$, so this is a sufficient number of terms to approximate to at least 5 decimal place

(c) $\sqrt{1.2}$

We will use $f(x) = \sqrt{x}$ centered at c = 1 and we will take x = 1.2.

Then
$$f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$$
, $f''(x) = -\frac{1}{4}x^{-\frac{3}{2}}$, $f'''(x) = \frac{3}{8}x^{-\frac{5}{2}}$, $f^{(4)}(x) = -\frac{15}{16}x^{-\frac{7}{2}}$, and $f^{(5)}(x) = -\frac{105}{32}x^{-\frac{9}{2}}$.

Then
$$f(1) = 1$$
, $f'(1) = \frac{1}{2}$, $f''(1) = -\frac{1}{4}$, $f'''(1) = \frac{3}{8}$, and $f^{(4)(1) = -\frac{15}{16}}$.

Hence
$$a_0 = 1$$
, $a_1 = \frac{1}{2}$, $a_2 = -\frac{1}{8}$, $a_3 = \frac{1}{16}$, and $a_4 = -\frac{5}{128}$

Hence
$$a_0 = 1$$
, $a_1 = \frac{1}{2}$, $a_2 = -\frac{1}{8}$, $a_3 = \frac{1}{16}$, and $a_4 = -\frac{5}{128}$
Thus $P_4(x) = 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 + \frac{1}{16}(x-1)^3 - \frac{5}{128}(x-1)^4$

and
$$R_4(x) = \frac{f^{(5)}(z)}{5!}(x-1)^5 = \frac{7z^{-\frac{9}{2}}}{256}(x-1)^5$$

Thus
$$\sqrt{1.2} \approx P_4(1.2) = 1 + \frac{1}{2}(0.2) - \frac{1}{8}(0.2)^2 + \frac{1}{16}(0.2)^3 - \frac{5}{128}(0.2)^4 \approx 1.0954375$$

The error of this approximation is at most: $\frac{7(1.2)^{-\frac{9}{2}}}{256}(0.2)^5 \approx .000003852$

Hence this estimate is already sufficient to approximate to 5 decimal places (one can easly verify that $P_3(x)$ is only accurate to 4 decimal places).