Math 262
Practice Problems Solutions
Power Series and Taylor Series

1. For each of the following power series, find the interval of convergence and the radius of convergence:
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Notice when x = 1, we have Z(—l)"n21" = Z(—l)”n2 which diverges by the nth term test.
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Similarly, when = = —1, we have Z(fl)"nQ(fl)” = Z(fl)me = Z 1 which diverges by the nth term test.
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Hence, the interval of convergence is: (—1,1) and the radius convergence is: R = 1.
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Notice when = = o we have ; ﬁ(fg)” = Z ( n2) Thus, since z:: 3 is a convergent p-series, the original

series converges absolutely.
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Similarly, when z = 5 e have nz:: ﬁ(i)n = Z wr_ Z ot which is a convergent p-series.
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Notice when = = —4, we have Z —3)" = z:(—l)"nS7 which diverges by the nth term test.
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, which, after a few applications of L’Hopital’s Rule, is , so this series converges
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Similarly, when x = 2, we have E —3" = E n® which diverges by the nth term test.
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Hence, the interval of convergence is: (—4,2) and the radius convergence is: R = 3.
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Similarly, when z = 10, we have Z(—
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Hence, the interval of convergence is: (—8,10] and the radlus convergence is: R = 10.
2. Use a known series to find a power series in = that has the given function as its sum:
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3. Use a power series to approximate each of the following to within 3 decimal places:
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Notice that the Maclaurin series arctan(z E 2 1 is an alternating series satisfying the hypotheses of
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the alternating series test when x = 5. Then to find our approximation, we need to find n such that T <
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Notice that the Maclaurin series In(1 + z) = Z(—l)” x—i—l is an alternating series satisfying the hypotheses
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alternating series test when x = =~. Then to find our approximation, we need to find n such that (2>1) < .0005.
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Hence sin (%) ~ 0.314159 — 0.0051677 ~ 0.309

4. For each of the following functions, find the Taylor Series about the indicated center and also determine the interval of
convergence for the series.
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Notice that f/(z ) ~Land f”(z) = e*"1. In fact, f(") () = e*~1 for every n.
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f'(x) = —sinz, f"(x) = cosz, f"(z) = sinz, f4( ) = —cosz, and the same pattern continues from there.
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Therefore, ag =0, a1 = —1, ax =0, ag = % = %
oo
1
Hence the series is: cosz = ;(_1)n+1m(x - g)QnH
x—Z[" (2n+1)!
To find the interval of convergence, notice that lim Intl| _ i | 3 . (2n +7T )
n—oo | Ay n—oo (2n+3)! |z — "

1
= im —M =

Thus thls series converges on (—o0,00) and R = o0.



8=

(c) flx) =

£la) = =%, (@) = 2575, (@) = —62~, 50 [ (z) = (~1)"a D)
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converges absolutely for 0 < z < 2

When 2 = 0, we have Z(—l)(—l)", which diverges by the nth term test.
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Similarly, when z = 2 we have Z " which also diverges by the nth term test.
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Thus this series converges on (0,2) and R = 1.

5. For each of the following functions, find the Taylor Polynomial for the function at the indicated center c¢. Also find the
Remainder term.

(a) f(x) =z, c=1,n=3
First, f'(z) = lx_% f(x) = —lx_% f(x) = §x_g and f4(z) = Ex_%
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fD ()= =31 +22) 72 +182%(1 +2?)" 2 — 152 (1 + )*% and fO)(z) = 452(1 + 22)7% — 15023(1 + 22) "% +

1052°(1 + 2%)~2
Then f(0) =1, f/(0) =0, f/(0) =1, f(0) = 0, and f™®(0) = —3.
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6. Estimate each of the following using a Taylor Polynomial of degree 4. Also find the error for your approximation.
Finally, find the number of terms needed to guarantee an accuracy or at least 5 decimal places.
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When z = 0.1, Py(x) = 1+ 0.1 + 0.005 + 0.0001667 + .000004167 = 1.105170867
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In general, R, (z) = mxm' = T 1)!(0.1)”Jr , where 0 < z < 0.1.
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When we use Py(z), our error is at most 65—'(0.1)5 ~ 0.000000092 (in fact, one would only need Ps(z) to get

within 5 decimal places).
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Recall that In(1 + z) = ;(_1) T
We will take z = —0.1 so that In(1 + z) = In(.9)
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When 2 = —0.1, Py(z) ~ —0.1 — 0.005 — 0.000333333 — .000025 = —0.105358333
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Since In(1 +z) is negative and increasing when —.1 < = < 0, we need to find n so that (—1)" 1
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When we use Py(z), our error is at most (0.1)° ~ 0.000084675.
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If we use Ps(z), our error is at most (0.1) ~ 0.000000314, so this is a sufficient number of terms to

approximate to at least 5 decimal places.
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We will use f(x) = /z centered at ¢ = 1 and we will take 2z = 1.2.
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The error of this approximation is at most: W(O.ms ~ .000003852

Hence this estimate is already sufficient to approximate to 5 decimal places (one can easly verify that Ps(x) is
only accurate to 4 decimal places).



