
Memory Hierarchy and Caches

Computer Architecture

Riad Bourbia

Computer Sciences department

Guelma University

[Adapted from slides of Dr. A. El-maleh]

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 2

Presentation Outline

 Random Access Memory and its Structure

Memory Hierarchy and the need for Cache Memory

 The Basics of Caches

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 3

Memory Technology

 Static RAM (SRAM)

 Used typically to implement Cache memory

 Requires 6 transistors per bit

 Low power to retain bit

 Dynamic RAM (DRAM)

 Used typically to implement Main Memory

 One transistor + capacitor per bit

 Must be re-written after being read

 Must be refreshed periodically

 By reading and rewriting all the rows in the DRAM

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 4

 Row decoder

 Select row to read/write

 Column decoder

 Select column to read/write

 Cell Matrix

 2D array of tiny memory cells

 Sense/Write amplifiers

 Sense & amplify data on read

 Drive bit line with data in on write

 Same data lines are used for data in/out

Typical Memory Structure

R
o

w
 a

d
d

re
s
s

r

.
.
. 2r × 2c × m bits

Cell Matrix

R
o
w

 D
e
c
o
d
e
r

Sense/write amplifiers

Column Decoder

. . .

Column address

c

Data Row Latch 2c × m bits
m

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 5

SDRAM and DDR SDRAM

 SDRAM is Synchronous Dynamic RAM

 Added clock to DRAM interface

 SDRAM is synchronous with the system clock

 Older DRAM technologies were asynchronous

 As system bus clock improved, SDRAM delivered higher

performance than asynchronous DRAM

 DDR is Double Data Rate SDRAM

 Like SDRAM, DDR is synchronous with the system clock,

but the difference is that DDR reads data on both the

rising and falling edges of the clock signal

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 6

Memory Modules

Memory Rank: Set of DRAM chips accessed in parallel

 Same Chip Select (CS) and Command (CMD)

 Same address, but different data lines

 Increases memory capacity and bandwidth

 Example: 64-bit data bus using 4 × 16-bit DRAM chips

CLK CMD

Address

Data

CS

. . .

Data width = p × m bits

. .
m m

CLK CMD

Address

Data

CSCLK CMD

Address

Data

CS

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 7

Trends in DRAM

Year
Memory

Standard

Chip

Capacity

(Mibit)

Bus

Clock

(MHz)

Data

Rate

(MT/s)

Peak

Bandwidth

(MB/s)

Total latency to

a new

row / column

1996 SDRAM 64-128 100-166 100-166 800-1333 60 ns

2000 DDR 256-512 100-200 200-400 1600-3200 55 ns

2003 DDR2 512-2048 200-400 400-800 3200-6400 50 ns

2007 DDR3 2048-8192 400-800 800-1600 6400-12800 40 ns

2014 DDR4 8192-32768 800-1600 1600-3200 12800-25600 35 ns

Memory chip capacity: 1 Mibit = 220 bits, 1 Gibit = 230 bits

 Data Rate = Millions of Transfers per second (MT/s)

 Data Rate = 2 × Bus Clock for DDR, DDR2, DDR3, DDR4

 1 Transfer = 8 bytes of data Bandwidth = MT/s × 8 bytes

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 8

Processor-Memory Performance Gap

 1980 – No cache in microprocessor

 1995 – Two-level cache on microprocessor

CPU Performance: 55% per year,

slowing down after 2004

P
e
rf

o
rm

a
n
c
e
 G

a
p

DRAM: 7% per year

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 9

The Need for Cache Memory

Widening speed gap between CPU and main memory

 Processor operation takes less than 1 ns

 Main memory requires more than 50 ns to access

 Each instruction involves at least one memory access

 One memory access to fetch the instruction

 A second memory access for load and store instructions

 Memory bandwidth limits the instruction execution rate

 Cache memory can help bridge the CPU-memory gap

 Cache memory is small in size but fast

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 10

Typical Memory Hierarchy

 Registers are at the top of the hierarchy

 Typical size < 1 KB

 Access time < 0.5 ns

 Level 1 Cache (8 – 64 KiB)

 Access time: 1 ns

 L2 Cache (1 MiB – 8 MiB)

 Access time: 3 – 10 ns

Main Memory (8 – 32 GiB)

 Access time: 40 – 50 ns

 Disk Storage (> 200 GB)

 Access time: 5 – 10 ms

Microprocessor

Registers

Main Memory

Magnetic or Flash Disk

Memory Bus

I/O Bus
F

a
s
te

r

B
ig

g
e
r

L1 Cache

L2 Cache

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 11

Principle of Locality of Reference

 Programs access small portion of their address space

 At any time, only a small set of instructions & data is needed

 Temporal Locality (in time)

 If an item is accessed, probably it will be accessed again soon

 Same loop instructions are fetched each iteration

 Same procedure may be called and executed many times

 Spatial Locality (in space)

 Tendency to access contiguous instructions/data in memory

 Sequential execution of Instructions

 Traversing arrays element by element

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 12

What is a Cache Memory ?

 Small and fast (SRAM) memory technology

 Stores the subset of instructions & data currently being accessed

 Used to reduce average access time to memory

 Caches exploit temporal locality by …

 Keeping recently accessed data closer to the processor

 Caches exploit spatial locality by …

 Moving blocks consisting of multiple contiguous words

 Goal is to achieve

 Fast speed of cache memory access

 Balance the cost of the memory system

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 13

Cache Memories in the Datapath

I-Cache miss or D-Cache miss causes

pipeline to stall

ALU result

32

0

1

D-Cache

Address

Data_in

Data_out

32

R
D

R
d
3

D
a

ta
R

d
4

32

A
L
U

32

A
B

R
d
2

clk

5Rs

5

Rd

Rt

32

R
e
g

is
te

r
F

il
e

RA

RB

BusA

BusB

RW BusW

0

1

Ext

0

2

3

1

0

2

3

1

I-Cache

AddressP
C

Instruction
In

s
tr

u
c
ti
o

n

Imm16

Interface to L2 Cache or Main Memory

I-
C

a
c
h

e
 m

is
s

D
-C

a
c
h

e
 m

is
s

In
s
tr

u
c
ti

o
n

 B
lo

c
k

D
a
ta

 B
lo

c
k

B
lo

c
k
 A

d
d

re
s
s

B
lo

c
k
 A

d
d

re
s
s

Im
m

1

0

0

2

1

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 14

Almost Everything is a Cache !

 In computer architecture, almost everything is a cache!

 Registers: a cache on variables – software managed

 First-level cache: a cache on second-level cache

 Second-level cache: a cache on memory (or L3 cache)

Memory: a cache on hard disk

 Stores recent programs and their data

 Hard disk can be viewed as an extension to main memory

 Branch target and prediction buffer

 Cache on branch target and prediction information

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 15

Four Basic Questions on Caches

 Q1: Where can a block be placed in a cache?

 Block placement

 Direct Mapped, Set Associative, Fully Associative

 Q2: How is a block found in a cache?

 Block identification

 Block address, tag, index

 Q3: Which block should be replaced on a cache miss?

 Block replacement

 FIFO, Random, LRU

 Q4: What happens on a write?

 Write strategy

 Write Back or Write Through cache (with Write Buffer)

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 16

Inside a Cache Memory

Processor
Cache

Memory

Main

Memory

Address

Data

Address

Data

 Cache Block (or Cache Line)

 Unit of data transfer between main memory and a cache

 Large block size Less tag overhead + Burst transfer from DRAM

 Typically, cache block size = 64 bytes in recent caches

Address Tag 0

Address Tag 1

Tag N – 1

Cache Block 0

Cache Block 1

Cache Block N – 1

N
C

a
c
h
e
 B

lo
c
k
s

Tags

identify

blocks in

the cache

.

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 17

Block Placement: Direct Mapped

 Block: unit of data transfer between cache and memory

 Direct Mapped Cache:

 A block can be placed in exactly one location in the cache

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

0
0
0
0
0

0
0
0
0
1

0
0
0
1
0

0
0

0
1
1

0
0
1
0
0

0
0
1
0
1

0
0

1
1

0

0
0

1
1
1

0
1
0
0
0

0
1
0
0
1

0
1
0
1
0

0
1

0
1
1

0
1
1

0
0

0
1
1

0
1

0
1
1
1

0

0
1
1
1
1

1
0
0
0
0

1
0
0
0
1

1
0
0
1
0

1
0
0
1
1

1
0
1
0
0

1
0
1
0
1

1
0

1
1

0

1
0

1
1
1

1
1

0
0

0

1
1

0
0

1

1
1

0
1

0

1
1

0
1
1

1
1
1

0
0

1
1
1

0
1

1
1
1
1

0

1
1
1
1
1

In this example:

Cache index =

least significant 3 bits of

Block address

C
a
c
h
e

M
a
in

M
e
m

o
ry

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 18

Direct-Mapped Cache

 A memory address is divided into

 Block address: identifies block in memory

 Block offset: to access bytes within a block

 A block address is further divided into

 Index: used for direct cache access

 Tag: most-significant bits of block address

Index = Block Address mod Cache Blocks

 Tag must be stored also inside cache

 For block identification

 A valid bit is also required to indicate

 Whether a cache block is valid or not

V Tag Block Data

=

Hit

Data

Tag Index offset

Block Address

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 19

Direct Mapped Cache – cont’d

 Cache hit: block is stored inside cache

 Index is used to access cache block

 Address tag is compared against stored tag

 If equal and cache block is valid then hit

 Otherwise: cache miss

 If number of cache blocks is 2n

 n bits are used for the cache index

 If number of bytes in a block is 2b

 b bits are used for the block offset

 If 32 bits are used for an address

 32 – n – b bits are used for the tag

 Cache data size = 2n+b bytes

V Tag Block Data

=

Hit

Data

Tag Index offset

Block Address

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 20

Mapping an Address to a Cache Block

 Example

 Consider a direct-mapped cache with 256 blocks

 Block size = 16 bytes

 Compute tag, index, and byte offset of address: 0x01FFF8AC

 Solution

 32-bit address is divided into:

 4-bit byte offset field, because block size = 24 = 16 bytes

 8-bit cache index, because there are 28 = 256 blocks in cache

 20-bit tag field

 Byte offset = 0xC = 12 (least significant 4 bits of address)

 Cache index = 0x8A = 138 (next lower 8 bits of address)

 Tag = 0x01FFF (upper 20 bits of address)

Tag Index offset

4820

Block Address

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 21

Fully Associative Cache

 A block can be placed anywhere in cache no indexing

 If m blocks exist then

 m comparators are needed to match tag

 Cache data size = m 2b bytes

m-way associative

Address

Tag offset

DataHit

= = = =

V Tag Block DataV Tag Block DataV Tag Block DataV Tag Block Data

mux

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 22

Set-Associative Cache

 A set is a group of blocks that can be indexed

 A block is first mapped onto a set

 Set index = Block address mod Number of sets in cache

 If there are m blocks in a set (m-way set associative) then

 m tags are checked in parallel using m comparators

 If 2n sets exist then set index consists of n bits

 Cache data size = m 2n+b bytes (with 2b bytes per block)

 Without counting tags and valid bits

 A direct-mapped cache has one block per set (m = 1)

 A fully-associative cache has one set (2n = 1 or n = 0)

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 23

Set-Associative Cache Diagram

m-way set-associative

V Tag Block DataV Tag Block DataV Tag Block DataV Tag Block Data

Address Tag Index offset

Data

= = = =

mux
Hit

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 24

Example on Cache Placement & Misses

 Consider a small direct-mapped cache with 32 blocks

 Cache is initially empty, Block size = 16 bytes

 The following memory addresses (in decimal) are referenced:

1000, 1004, 1008, 2548, 2552, 2556.

 Map addresses to cache blocks and indicate whether hit or miss

 Solution:

 1000 = 0x3E8 cache index = 0x1E Miss (first access)

 1004 = 0x3EC cache index = 0x1E Hit

 1008 = 0x3F0 cache index = 0x1F Miss (first access)

 2548 = 0x9F4 cache index = 0x1F Miss (different tag)

 2552 = 0x9F8 cache index = 0x1F Hit

 2556 = 0x9FC cache index = 0x1F Hit

Tag Index offset

4523

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 25

Write Policy

Write Through:

 Writes update cache and lower-level memory

 Cache control bit: only a Valid bit is needed

 Memory always has latest data, which simplifies data coherency

 Can always discard cached data when a block is replaced

Write Back:

 Writes update cache only

 Cache control bits: Valid and Modified bits are required

 Modified cached data is written back to memory when replaced

 Multiple writes to a cache block require only one write to memory

 Uses less memory bandwidth than write-through and less power

 However, more complex to implement than write through

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 26

What Happens on a Cache Miss?

 Cache sends a miss signal to stall the processor

 Decide which cache block to allocate/replace

 One choice only when the cache is directly mapped

 Multiple choices for set-associative or fully-associative cache

 Transfer the block from lower level memory to this cache

 Set the valid bit and the tag field from the upper address bits

 If block to be replaced is modified then write it back

 Modified block is written back to memory

 Otherwise, block to be replaced can be simply discarded

 Restart the instruction that caused the cache miss

Miss Penalty: clock cycles to process a cache miss

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 27

Replacement Policy

Which block to be replaced on a cache miss?

 No selection alternatives for direct-mapped caches

m blocks per set to choose from for associative caches

 Random replacement

 Candidate blocks are randomly selected

 One counter for all sets (0 to m – 1): incremented on every cycle

 On a cache miss replace block specified by counter

 First In First Out (FIFO) replacement

 Replace oldest block in set

 One counter per set (0 to m – 1): specifies oldest block to replace

 Counter is incremented on a cache miss

Memory Hierarchy & Caches COE 301 – Computer Organization © Muhamed Mudawar – slide 28

Replacement Policy – cont’d

 Least Recently Used (LRU)

 Replace block that has been unused for the longest time

 Order blocks within a set from least to most recently used

 Update ordering of blocks on each cache hit

 With m blocks per set, there are m! possible permutations

 Pure LRU is too costly to implement when m > 2

 m = 2, there are 2 permutations only (a single bit is needed)

 m = 4, there are 4! = 24 possible permutations

 LRU approximation is used in practice

 For large m > 4,

Random replacement can be as effective as LRU

