Memory Hierarchy and Caches

Computer Architecture
Riad Bourbia

Computer Sciences department
Guelma University

[Adapted from slides of Dr. A. El-maleh]

Presentation Outline

** Random Access Memory and its Structure
“* Memory Hierarchy and the need for Cache Memory

+» The Basics of Caches

slide 2

Memory Technology

s Static RAM (SRAM)
< Used typically to implement Cache memory
< Requires 6 transistors per bit

< Low power to retain bit

s Dynamic RAM (DRAM)

L)

< Used typically to implement Main Memory
< One transistor + capacitor per bit

< Must be re-written after being read

< Must be refreshed periodically

* By reading and rewriting all the rows in the DRAM

slide 3

Typical Memory Structure

+» Row decoder

. /
< Select row to read/write _
(D]
7 O .
% Column decoder gl | 3 2" x 2¢ x m bits
S A |
< Select column to read/write é 3 Cell Matrix
%
% Cell Matrix —
{- 2D array of tiny memory cells _ Sense/write amplifiers
Data <> Row Latch 2¢ x m bits

*» Sense/Write amplifiers

< Sense & amplify data on read \ Column Decoder /

< Drive bit line with data in on write - 1
Column address

«» Same data lines are used for data in/out

slide 4

SDRAM and DDR SDRAM

“* SDRAM is Synchronous Dynamic RAM
< Added clock to DRAM interface

“* SDRAM is synchronous with the system clock

<> Older DRAM technologies were asynchronous

< As system bus clock improved, SDRAM delivered higher
performance than asynchronous DRAM

* DDR Is Double Data Rate SDRAM

< Like SDRAM, DDR is synchronous with the system clock,
but the difference is that DDR reads data on both the
rising and falling edges of the clock signal

slide 5

Memory Modules

** Memory Rank: Set of DRAM chips accessed in parallel
< Same Chip Select (CS) and Command (CMD)

<> Same address, but different data lines

< Increases memory capacity and bandwidth

< Example: 64-bit data bus using 4 x 16-bit DRAM chips

CLK CS CMD CLK CS CMD CLK CS CMD
Address Address - —p Address
Data Data Data
i] i
v \

Data width = p x m bits

slide 6

Trends in DRAM

Memor Chip Bus Data Peak Total latency to
Year Stan dar{I Capacity Clock Rate Bandwidth a new
(Mibit) (MHz) (MT/s) (MB/s) row / column
1996 | SDRAM 64-128 100-166 100-166 800-1333 60 ns
2000 DDR 256-512 100-200 200-400 1600-3200 55 ns
2003 | DDR2 512-2048 200-400 400-800 3200-6400 50 ns
2007 | DDRS3 2048-8192 400-800 800-1600 6400-12800 40 ns
2014 | DDR4 8192-32768 | 800-1600 | 1600-3200 | 12800-25600 35ns

¢ Memory chip capacity: 1 Mibit = 220 bits, 1 Gibit = 230 bits

+» Data Rate = Millions of Transfers per second (MT/s)
+» Data Rate = 2 x Bus Clock for DDR, DDR2, DDR3, DDR4
*» 1 Transfer = 8 bytes of data = Bandwidth = MT/s x 8 bytes

slide 7

Processor-Memory Performance Gap

100,000
CPU Performance: 55% per yeatr,
slowing down after 2004
10,000 frrmeremmrmem s e gy
o
g G
% 1,000 —fremveemmmmme e e gL s P
=
O
E 100 O SRR g
o =
o
o
10 USROS
1 DRAM: 7% per year
| | | | |
1980 1985 1990 1995 2000 2005 2010
Year

*» 1980 — No cache in microprocessor

s 1995 — Two-level cache on microprocessor

-slide 8

The Need for Cache Memory

*» Widening speed gap between CPU and main memory
<> Processor operation takes less than 1 ns

<> Main memory requires more than 50 ns to access

¢ Each instruction involves at least one memory access

< One memory access to fetch the instruction

<> A second memory access for load and store instructions
“* Memory bandwidth limits the instruction execution rate
*» Cache memory can help bridge the CPU-memory gap

s Cache memory is small in size but fast

-slide 9

Typical Memory Hierarchy

*» Registers are at the top of the hierarchy

< Typical size <1 KB

< Access time < 0.5 ns

¢ Level 1 Cache (8 — 64 KiB)

< Accesstime: 1 ns

*» L2 Cache (1 MiB — 8 MiB)
< Accesstime: 3-10ns

* Main Memory (8 — 32 GIB)
< Access time: 40 — 50 ns

¢ Disk Storage (> 200 GB)

< Access time: 5—-10 ms

Faster

Microprocessor

Registers

L1 Cache

L2 Cache

J

Memory Bus

Main Memory

/O Bus

Bigger

Magnetic or Flash Disk

slide 10

Principle of Locality of Reference

*» Programs access small portion of their address space

< At any time, only a small set of instructions & data is needed

“» Temporal Locality (in time)
< If an item is accessed, probably it will be accessed again soon
<> Same loop instructions are fetched each iteration

<> Same procedure may be called and executed many times
% Spatial Locality (in space)
<> Tendency to access contiguous instructions/data in memory

<> Sequential execution of Instructions

< Traversing arrays element by element

slide 11

What is a Cache Memory ?

*» Small and fast (SRAM) memory technology

< Stores the subset of instructions & data currently being accessed

¢ Used to reduce average access time to memory

% Caches exploit temporal locality by ...

< Keeping recently accessed data closer to the processor

*» Caches exploit spatial locality by ...

< Moving blocks consisting of multiple contiguous words

*» Goal is to achieve
< Fast speed of cache memory access

<> Balance the cost of the memory system

slide 12

Cache Memories in the Datapath

Imm16

=
§ ALU result 32
(0)
. L 32
[-Cache c = BusA =112 D-Cache 5
Instruction jmp| S e S LusB I I ~ T > 7 Address g
= > (%))
Address 4 S I 1 0 || Data_out
.‘1 fgi) 2 ma 0 Data in
RW BusW [] (| L
y w— 3) T 32 A
~ 2 || L =
(1 "2 &
Y] = T ‘
un
X
" S .
2 |2 Mo 2 3
= — = . . = o 4
S |E 5 I-Cache miss or D-Cache miss causes 2 5 S
< |2 Qe T < 5 o
4 5 X
N E pipeline to stall s g g
om X = m a) a)
\ 4 \4

Interface to L2 Cache or Main Memory

slide 13

Almost Everything is a Cache |

¢ In computer architecture, almost everything is a cache!
** Registers: a cache on variables — software managed
¢ First-level cache: a cache on second-level cache

s Second-level cache: a cache on memory (or L3 cache)

** Memory: a cache on hard disk

< Stores recent programs and their data

<> Hard disk can be viewed as an extension to main memory

¢ Branch target and prediction buffer

< Cache on branch target and prediction information

slide 14

Four Basic Questions on Caches

* Q1: Where can a block be placed in a cache?
< Block placement
< Direct Mapped, Set Associative, Fully Associative
* Q2: How Is a block found in a cache?
< Block identification
< Block address, tag, index
¢ Q3: Which block should be replaced on a cache miss?
< Block replacement
< FIFO, Random, LRU
* Q4: What happens on a write?

< Write strategy
< Write Back or Write Through cache (with Write Buffer)

slide 15

Inside a Cache Memory

") Address (") Address (.
Processor | Cache Main
D D
A Memory 228 Memory
S N e —

_— N 9
Tags Address Tag 0 Cache Block 0 S
identify Address Tag 1 Cache Block 1 X %
blocks in ;fé
the cache Tag N -1 Cache Block N — 1 O
N 7z

“» Cache Block (or Cache Line)
< Unit of data transfer between main memory and a cache
< Large block size = Less tag overhead + Burst transfer from DRAM

< Typically, cache block size = 64 bytes in recent caches

slide 16

Block Placement: Direct Mapped

“+ Block: unit of data transfer between cache and memory

¢ Direct Mapped Cache:

< A block can be placed in exactly one location in the cache

O 1 O+ O 1 O dH

OO dd OO A

_ O O0OO0OO0O A A
In this example: O
Cache index = S
o : @©
least significant 3 bits of /';] | O

Block address

b

7 A

e N

v v R\ R\ c o

d Ne
> o

O 1O 4O dHO Od O q40O d O 1O 4O dHO o d O
SoddoogdooddooSdcoaddoogdsoad338Sd
OO0 0O d A Add O 000 ddJ0000 A dAdd OO0 dAdAA
OO0 000000 dAddAddd A A OO0 O0O0O0O0 Idud duodudyg
OO0 OO0 OO0 00000O0O0O0 dddAdAdAAdAd A AAAAAAA A

slide 17

Direct-Mapped Cache

“ A memory address is divided into
< Block address: identifies block in memory

< Block offset: to access bytes within a block

*» A block address is further divided into
< Index: used for direct cache access
< Tag: most-significant bits of block address

Index = Block Address mod Cache Blocks

¢ Tag must be stored also inside cache

< For block identification

*» A valid bit is also required to indicate

<> Whether a cache block is valid or not

Block Address

A

r

~

Tag

Index |offset

]
V Tag Block Data
K ®
1@ v
Data

slide 18

Direct Mapped Cache - cont'd

¢ Cache hit: block is stored inside cache
< Index is used to access cache block
<> Address tag is compared against stored tag
< If equal and cache block is valid then hit

< Otherwise: cache miss

» If number of cache blocks is 2"

<> n bits are used for the cache index

< If number of bytes in a block is 2P
<> b bits are used for the block offset

¢ |If 32 bits are used for an address
< 32 — n — b bits are used for the tag

% Cache data size = 2"b pytes

Block

Address

A

Ve

~

Tag

Index

offset

1
V Tag Block Data
L) | @ ®
Data

slide 19

Mapping an Address to a Cache Block

“ Example
<> Consider a direct-mapped cache with 256 blocks
<> Block size = 16 bytes
< Compute tag, index, and byte offset of address: OXO1FFF8SAC

Block Address

s Solution ”

r N\

20 8 4
< 32-bit address is divided into: Tag Index |offset

= 4-bit byte offset field, because block size = 2% = 16 bytes
= 8-bit cache index, because there are 28 = 256 blocks in cache
= 20-bit tag field
< Byte offset = OxC = 12 (least significant 4 bits of address)
<> Cache index = 0x8A = 138 (next lower 8 bits of address)

< Tag = OXO1FFF (upper 20 bits of address)

slide 20

Fully Associative Cache

*» A block can be placed anywhere in cache = no indexing

* |If m blocks exist then

<> m comparators are needed to match tag

<> Cache data size = m x 2b bytes

Address

Tag

offset

V Tag Block Data V Tag Block Data

V Tag Block Data

V Tag Block Data

® T r ® T ®

e

® T ®

m-way associative

slide 21

Set-Associative Cache

“ A set is a group of blocks that can be indexed

*» A block is first mapped onto a set

< Set index = Block address mod Number of sets in cache

¢ If there are m blocks in a set (m-way set associative) then

<> m tags are checked in parallel using m comparators
*» If 2" sets exist then set index consists of n bits

% Cache data size = m x 2"*0 pytes (with 2 bytes per block)

< Without counting tags and valid bits
*» A direct-mapped cache has one block per set (m =1)

¢ A fully-associative cache has one set (2" =1 or n = 0)

slide 22

Set-Associative Cache Diagram

Address Tag Index |offset
l
V Tag Block Data V Tag Block Data V Tag Block Data V Tag Block Data
>e| o ? ‘>0 o ? >0 o ? >e o [
y) 4

m-way set-associative Hit

slide 23

Example on Cache Placement & Misses

¢ Consider a small direct-mapped cache with 32 blocks

<> Cache is initially empty, Block size = 16 bytes

< The following memory addresses (in decimal) are referenced:

1000, 1004, 1008, 2548, 2552, 2556.

< Map addresses to cache blocks and indicate whether hit or miss

s+ Solution:

< 1000 = Ox3ES8
< 1004 = Ox3EC
< 1008 = 0x3F0
< 2548 = Ox9F4
< 2552 = Ox9F8
< 2556 = Ox9FC

23

5

4

Tag

Index

offset

cache index = Ox1E
cache index = Ox1E
cache index = Ox1F
cache index = Ox1F
cache index = Ox1F
cache index = Ox1F

Miss (first access)
Hit
Miss (first access)
Miss (different tag)
Hit
Hit

slide 24

Write Policy

“* Write Through:
<> Writes update cache and lower-level memory
<> Cache control bit: only a Valid bit is needed
< Memory always has latest data, which simplifies data coherency

<> Can always discard cached data when a block is replaced

» Write Back:

<> Writes update cache only

< Cache control bits: Valid and Modified bits are required

<> Modified cached data is written back to memory when replaced
<> Multiple writes to a cache block require only one write to memory
< Uses less memory bandwidth than write-through and less power

< However, more complex to implement than write through

slide 25

What Happens on a Cache Miss?

¢ Cache sends a miss signal to stall the processor

¢ Decide which cache block to allocate/replace

<> One choice only when the cache is directly mapped

< Multiple choices for set-associative or fully-associative cache

¢ Transfer the block from lower level memory to this cache

< Set the valid bit and the tag field from the upper address bits

¢ If block to be replaced is modified then write it back
<> Modified block is written back to memory

< Otherwise, block to be replaced can be simply discarded
*» Restart the instruction that caused the cache miss

“* Miss Penalty: clock cycles to process a cache miss

slide 26

Replacement Policy

“* Which block to be replaced on a cache miss?
** No selection alternatives for direct-mapped caches
“ m blocks per set to choose from for associative caches

** Random replacement
<> Candidate blocks are randomly selected
< One counter for all sets (0 to m — 1): incremented on every cycle

<> On a cache miss replace block specified by counter
¢ First In First Out (FIFO) replacement
< Replace oldest block in set

<> One counter per set (0 to m — 1): specifies oldest block to replace

<> Counter is incremented on a cache miss

slide 27

Replacement Policy - cont'd

*» Least Recently Used (LRU)
< Replace block that has been unused for the longest time
<> Order blocks within a set from least to most recently used
<> Update ordering of blocks on each cache hit

<> With m blocks per set, there are m! possible permutations

¢ Pure LRU is too costly to implement when m > 2
< m =2, there are 2 permutations only (a single bit is needed)
< m =4, there are 4! = 24 possible permutations

< LRU approximation is used in practice
** For large m > 4,

Random replacement can be as effective as LRU

slide 28

