
Functions

Mohamed MESSABIHI

mohamed.messabihi@gmail.com

University of Tlemcen
Department of Computer Science

https://sites.google.com/site/informatiquemessabihi/

mailto:mohamed.messabihi@gmail.com
mailto:https://sites.google.com/site/informatiquemessabihi/


Why Functions?

• A C language program begins with the main function.

• So far, we have stayed inside the main function. We have never
exited it.

• It’s not "wrong," but it’s not what C programmers do in reality.

• Almost no program is written solely within the curly braces of the
main function.

• So far, our programs were short, so it wasn’t a big problem.

• But imagine larger programs with thousands of lines of code.



Why Functions?

• A C language program begins with the main function.

• So far, we have stayed inside the main function. We have never
exited it.

• It’s not "wrong," but it’s not what C programmers do in reality.

• Almost no program is written solely within the curly braces of the
main function.

• So far, our programs were short, so it wasn’t a big problem.

• But imagine larger programs with thousands of lines of code.



Why Functions?

• A C language program begins with the main function.

• So far, we have stayed inside the main function. We have never
exited it.

• It’s not "wrong," but it’s not what C programmers do in reality.

• Almost no program is written solely within the curly braces of the
main function.

• So far, our programs were short, so it wasn’t a big problem.

• But imagine larger programs with thousands of lines of code.



Why Functions?

• A C language program begins with the main function.

• So far, we have stayed inside the main function. We have never
exited it.

• It’s not "wrong," but it’s not what C programmers do in reality.

• Almost no program is written solely within the curly braces of the
main function.

• So far, our programs were short, so it wasn’t a big problem.

• But imagine larger programs with thousands of lines of code.



Why Functions?

• A C language program begins with the main function.

• So far, we have stayed inside the main function. We have never
exited it.

• It’s not "wrong," but it’s not what C programmers do in reality.

• Almost no program is written solely within the curly braces of the
main function.

• So far, our programs were short, so it wasn’t a big problem.

• But imagine larger programs with thousands of lines of code.



Why Functions?

• A C language program begins with the main function.

• So far, we have stayed inside the main function. We have never
exited it.

• It’s not "wrong," but it’s not what C programmers do in reality.

• Almost no program is written solely within the curly braces of the
main function.

• So far, our programs were short, so it wasn’t a big problem.

• But imagine larger programs with thousands of lines of code.



Solution: Function Concept
• Therefore, we need to learn to organize ourselves.

• We need to break down our programs into small pieces.

• Each "small piece of program" will be what we call a function.

Function
A function performs actions and returns a result. It is a piece of code
that serves to do something specific.



Solution: Function Concept
• Therefore, we need to learn to organize ourselves.

• We need to break down our programs into small pieces.

• Each "small piece of program" will be what we call a function.

Function
A function performs actions and returns a result. It is a piece of code
that serves to do something specific.



Advantages of Functions

Functions are independent modules (groups of instructions) designated
by a name. They have several advantages:

1. They allow "factorizing" programs, i.e., sharing common parts.

2. They enable structuring and improving readability of programs.

3. They simplify code maintenance (just needs to be modified once).

4. They can potentially be reused in other programs.



Advantages of Functions

Functions are independent modules (groups of instructions) designated
by a name. They have several advantages:

1. They allow "factorizing" programs, i.e., sharing common parts.

2. They enable structuring and improving readability of programs.

3. They simplify code maintenance (just needs to be modified once).

4. They can potentially be reused in other programs.



Advantages of Functions

Functions are independent modules (groups of instructions) designated
by a name. They have several advantages:

1. They allow "factorizing" programs, i.e., sharing common parts.

2. They enable structuring and improving readability of programs.

3. They simplify code maintenance (just needs to be modified once).

4. They can potentially be reused in other programs.



Advantages of Functions

Functions are independent modules (groups of instructions) designated
by a name. They have several advantages:

1. They allow "factorizing" programs, i.e., sharing common parts.

2. They enable structuring and improving readability of programs.

3. They simplify code maintenance (just needs to be modified once).

4. They can potentially be reused in other programs.



Advantages of Functions

Functions are independent modules (groups of instructions) designated
by a name. They have several advantages:

1. They allow "factorizing" programs, i.e., sharing common parts.

2. They enable structuring and improving readability of programs.

3. They simplify code maintenance (just needs to be modified once).

4. They can potentially be reused in other programs.



Principle
A function is defined by three elements:
1. Input: We "input" information into the function (providing it with

data to work on).
2. Calculations: With the input information, the function performs

its work.
3. Output: Once it has finished its calculations, the function returns a

result. This is called the output or return.



Principle
A function is defined by three elements:
1. Input: We "input" information into the function (providing it with

data to work on).
2. Calculations: With the input information, the function performs

its work.
3. Output: Once it has finished its calculations, the function returns a

result. This is called the output or return.



Principle
A function is defined by three elements:
1. Input: We "input" information into the function (providing it with

data to work on).
2. Calculations: With the input information, the function performs

its work.
3. Output: Once it has finished its calculations, the function returns a

result. This is called the output or return.



Principle
A function is defined by three elements:
1. Input: We "input" information into the function (providing it with

data to work on).
2. Calculations: With the input information, the function performs

its work.
3. Output: Once it has finished its calculations, the function returns a

result. This is called the output or return.



Declaring a Function

Syntax:

<Return_Type > <Function_Name > (<Parameters >)
{
<Function_Body >

}

• Return type: (corresponds to the output) it is the type of the
function. This type depends on the result that the function returns
(int, double, void,...)

• Function Name: this is the name of your function. It must follow
the same rules as variables.

• Parameters: (corresponds to the input) in parentheses, we send
parameters to the function.



Declaring a Function

Syntax:

<Return_Type > <Function_Name > (<Parameters >)
{
<Function_Body >

}

• Return type: (corresponds to the output) it is the type of the
function. This type depends on the result that the function returns
(int, double, void,...)

• Function Name: this is the name of your function. It must follow
the same rules as variables.

• Parameters: (corresponds to the input) in parentheses, we send
parameters to the function.



Declaring a Function

Syntax:

<Return_Type > <Function_Name > (<Parameters >)
{
<Function_Body >

}

• Return type: (corresponds to the output) it is the type of the
function. This type depends on the result that the function returns
(int, double, void,...)

• Function Name: this is the name of your function. It must follow
the same rules as variables.

• Parameters: (corresponds to the input) in parentheses, we send
parameters to the function.



Declaring a Function

Syntax:

<Return_Type > <Function_Name > (<Parameters >)
{
<Function_Body >

}

• Return type: (corresponds to the output) it is the type of the
function. This type depends on the result that the function returns
(int, double, void,...)

• Function Name: this is the name of your function. It must follow
the same rules as variables.

• Parameters: (corresponds to the input) in parentheses, we send
parameters to the function.



Void Return Type
• It may be necessary to code a function that does not return any

result.
• This is a common case in C. This type of function is called a

procedure.
• To write a procedure, you need to indicate to the function that it

should not return anything.
• For this, there is a special "return type": void. This type means

"empty" and is used to indicate that the function has no result.

Example

void displayMenu ()
{

printf("===== Menu =====\n\n");
printf("1. Black Coffee \n");
printf("2. Latte \n");
printf("3. Hot Chocolate\n");
printf("4. Mint Tea \n");

}



Void Return Type
• It may be necessary to code a function that does not return any

result.
• This is a common case in C. This type of function is called a

procedure.
• To write a procedure, you need to indicate to the function that it

should not return anything.
• For this, there is a special "return type": void. This type means

"empty" and is used to indicate that the function has no result.

Example

void displayMenu ()
{

printf("===== Menu =====\n\n");
printf("1. Black Coffee \n");
printf("2. Latte \n");
printf("3. Hot Chocolate\n");
printf("4. Mint Tea \n");

}



Void Return Type
• It may be necessary to code a function that does not return any

result.
• This is a common case in C. This type of function is called a

procedure.
• To write a procedure, you need to indicate to the function that it

should not return anything.
• For this, there is a special "return type": void. This type means

"empty" and is used to indicate that the function has no result.

Example

void displayMenu ()
{

printf("===== Menu =====\n\n");
printf("1. Black Coffee \n");
printf("2. Latte \n");
printf("3. Hot Chocolate\n");
printf("4. Mint Tea \n");

}



Void Return Type
• It may be necessary to code a function that does not return any

result.
• This is a common case in C. This type of function is called a

procedure.
• To write a procedure, you need to indicate to the function that it

should not return anything.
• For this, there is a special "return type": void. This type means

"empty" and is used to indicate that the function has no result.

Example

void displayMenu ()
{

printf("===== Menu =====\n\n");
printf("1. Black Coffee \n");
printf("2. Latte \n");
printf("3. Hot Chocolate\n");
printf("4. Mint Tea \n");

}



Void Return Type
• It may be necessary to code a function that does not return any

result.
• This is a common case in C. This type of function is called a

procedure.
• To write a procedure, you need to indicate to the function that it

should not return anything.
• For this, there is a special "return type": void. This type means

"empty" and is used to indicate that the function has no result.

Example

void displayMenu ()
{

printf("===== Menu =====\n\n");
printf("1. Black Coffee \n");
printf("2. Latte \n");
printf("3. Hot Chocolate\n");
printf("4. Mint Tea \n");

}



Function Parameters
• A parameter serves to provide information to the function during its

execution.
• If the function requires multiple parameters, separate them with

commas.

Example:

int sum(int a, int b)
{

return a + b;
}
// Functions without parameters
void greet()
{

printf("Hello");
}

• Parameters must have different names.
• It is also possible to have no arguments in a function. In this case,

write () or (void).



Function Parameters
• A parameter serves to provide information to the function during its

execution.
• If the function requires multiple parameters, separate them with

commas.

Example:

int sum(int a, int b)
{

return a + b;
}
// Functions without parameters
void greet()
{

printf("Hello");
}

• Parameters must have different names.
• It is also possible to have no arguments in a function. In this case,

write () or (void).



Function Parameters
• A parameter serves to provide information to the function during its

execution.
• If the function requires multiple parameters, separate them with

commas.

Example:

int sum(int a, int b)
{

return a + b;
}
// Functions without parameters
void greet()
{

printf("Hello");
}

• Parameters must have different names.
• It is also possible to have no arguments in a function. In this case,

write () or (void).



Function Parameters
• A parameter serves to provide information to the function during its

execution.
• If the function requires multiple parameters, separate them with

commas.

Example:

int sum(int a, int b)
{

return a + b;
}
// Functions without parameters
void greet()
{

printf("Hello");
}

• Parameters must have different names.
• It is also possible to have no arguments in a function. In this case,

write () or (void).



Function Parameters
• A parameter serves to provide information to the function during its

execution.
• If the function requires multiple parameters, separate them with

commas.

Example:

int sum(int a, int b)
{

return a + b;
}
// Functions without parameters
void greet()
{

printf("Hello");
}

• Parameters must have different names.
• It is also possible to have no arguments in a function. In this case,

write () or (void).



Return Statement
• The return statement specifies the result that the function should

return (send back).

• Any expression can be mentioned after return.

Example:

float polynomial(float x, int b, int c)
{
float result;
result = x * x + b * x + c;
return result;

// is equivalent to

float polynomial(float x, int b, int c)
{
return (x * x + b * x + c);
}



Return Statement

• The return statement can appear multiple times in a function.

Example:

double absoluteProduct(double u, double v)
{

double s ;
s = u*v ;
if (s>0) return (s) ;
else return (-s);

}

• The type of the expression in return must be the same as declared
in the function header. Otherwise, the compiler will automatically
insert conversion instructions.



Return Statement

• The return statement can appear multiple times in a function.

Example:

double absoluteProduct(double u, double v)
{

double s ;
s = u*v ;
if (s>0) return (s) ;
else return (-s);

}

• The type of the expression in return must be the same as declared
in the function header. Otherwise, the compiler will automatically
insert conversion instructions.



Return Statement

• The return statement can appear multiple times in a function.

Example:

double absoluteProduct(double u, double v)
{

double s ;
s = u*v ;
if (s>0) return (s) ;
else return (-s);

}

• The type of the expression in return must be the same as declared
in the function header. Otherwise, the compiler will automatically
insert conversion instructions.



Usage of a Function
Simply type the name of the function followed by the parameters in
parentheses.

Example:

#include <stdio.h>
#include <stdlib.h>

int triple(int number) // 6
{

return 3 * number; // 7
}
int main() // 1
{

int enteredNumber = 0, tripledNumber = 0; // 2
printf("Enter a number ... "); // 3
scanf("%d", &enteredNumber); // 4

tripledNumber = triple(enteredNumber); // 5

printf("The triple of this number is %d\n", tripledNumber)
;//8

return 0; // 9
}



Function Call



Not Required to Store the Result of a Function

Example:

int triple(int number)
{

return 3 * number;
}
int main()
{

...
printf("The triple is %d\n", triple(inputNumber));
...

}

The main function calls the printf function, which in turn calls the
triple function. It’s a nesting of functions.



Formal Parameters Vs. Actual Parameters

int triple(int number)
{

return 3 * number;
}

int main()
{

...
printf("The triple is %d\n", triple(inputNumber));
...

}

1. The names of the arguments in the function header are called
"formal parameters." Their role is to describe what the function
should do within its body.

2. The arguments provided during the use (the call) of the function are
called "actual parameters." Any expression can be used as an actual
parameter.



Formal Parameters Vs. Actual Parameters

int triple(int number)
{

return 3 * number;
}

int main()
{

...
printf("The triple is %d\n", triple(inputNumber));
...

}

1. The names of the arguments in the function header are called
"formal parameters." Their role is to describe what the function
should do within its body.

2. The arguments provided during the use (the call) of the function are
called "actual parameters." Any expression can be used as an actual
parameter.



Passing Parameters by Value

Example:

#include <stdio.h>

void function(int number)
{

++ number;
printf("Variable ’number ’ in the function: %d\n", number

);
}
int main(void)
{

int number = 5;
function(number);
printf("Variable ’number ’ in main: %d\n", number);
return 0;

}



Passing Parameters by Value

Example:

#include <stdio.h>

void function(int number)
{

++ number;
printf("Variable ’number ’ in the function: %d\n", number

);
}
int main(void)
{

int number = 5;
function(number);
printf("Variable ’number ’ in main: %d\n", number);
return 0;

}

Variable ’number’ in the function: 6



Passing Parameters by Value

Example:

#include <stdio.h>

void function(int number)
{

++ number;
printf("Variable ’number ’ in the function: %d\n", number

);
}
int main(void)
{

int number = 5;
function(number);
printf("Variable ’number ’ in main: %d\n", number);
return 0;

}

Variable ’number’ in the function: 6
Variable ’number’ in main: 5



Scope of Variables
#include <stdio.h>
int i = 4;
int f1(int a){

i = i*f2(i-1);
return i;

}
int f2(int i){

i = i*f3(i-1);
return i;

}
int f3(int a){

int i = 4;
i = i * (i-1);
return i;

}
void main(){

int i = 0;
while(i<3){

printf("Enter an integer value\n");
scanf("%d", &i); }

i = f1(i);
printf("The result of the program is: %d\n", i);

}



Function Prototypes

• Defining a function after main will cause undefined behavior.

• Compilation could work or crash.

• In principle, the order of definitions in the program text does not
play a role, but each function must be declared (prototyped) or
defined before being called.

• In the prototype parameters, only the types are really necessary;
identifiers are optional.



Function Prototypes

• Defining a function after main will cause undefined behavior.

• Compilation could work or crash.

• In principle, the order of definitions in the program text does not
play a role, but each function must be declared (prototyped) or
defined before being called.

• In the prototype parameters, only the types are really necessary;
identifiers are optional.



Function Prototypes

• Defining a function after main will cause undefined behavior.

• Compilation could work or crash.

• In principle, the order of definitions in the program text does not
play a role, but each function must be declared (prototyped) or
defined before being called.

• In the prototype parameters, only the types are really necessary;
identifiers are optional.



Function Prototypes

• Defining a function after main will cause undefined behavior.

• Compilation could work or crash.

• In principle, the order of definitions in the program text does not
play a role, but each function must be declared (prototyped) or
defined before being called.

• In the prototype parameters, only the types are really necessary;
identifiers are optional.



Function Prototypes

Example:

#include <stdio.h>
int square(int number);

int main(void)
{

int number , squaredNumber;
puts("Enter a number:");
scanf("%d", &number);
squaredNumber = square(number);
printf("Here is the square of %d: %d\n", number ,

squaredNumber);
return 0;

}

int square(int number)
{

number *= number;
return number;

}



Remarks

• The default type is int; in other words, if the type of a function is
not explicitly declared, it is automatically int.

• It is forbidden to define functions inside another function (unlike
Pascal).

• The order of definitions in the program text does not play a role, but
each function must be declared (prototyped) or defined before being
called.

• In function prototype parameters, only the types are necessary;
identifiers are optional.



Remarks

• The default type is int; in other words, if the type of a function is
not explicitly declared, it is automatically int.

• It is forbidden to define functions inside another function (unlike
Pascal).

• The order of definitions in the program text does not play a role, but
each function must be declared (prototyped) or defined before being
called.

• In function prototype parameters, only the types are necessary;
identifiers are optional.



Remarks

• The default type is int; in other words, if the type of a function is
not explicitly declared, it is automatically int.

• It is forbidden to define functions inside another function (unlike
Pascal).

• The order of definitions in the program text does not play a role, but
each function must be declared (prototyped) or defined before being
called.

• In function prototype parameters, only the types are necessary;
identifiers are optional.



Remarks

• The default type is int; in other words, if the type of a function is
not explicitly declared, it is automatically int.

• It is forbidden to define functions inside another function (unlike
Pascal).

• The order of definitions in the program text does not play a role, but
each function must be declared (prototyped) or defined before being
called.

• In function prototype parameters, only the types are necessary;
identifiers are optional.


