
Sub-programs:
Procedures and Functions
CHAPTER 6

Chapter 6 : Sub-programs

1. Introduction

2. Definitions

3. Local and global variables

4. Parameters passing

5. Recursion

20/12/2024 2

Introduction : Illustrative example
Consider the following problem:

Write an algorithm that uses 2 numerical values to perform addition
(+), subtraction (-), multiplication (*) or division, depending on the
user's choice.

Two solutions can be proposed:

20/12/2024 3

Introduction : Illustrative example
Consider the following problem:

Write an algorithm that uses 2 numerical values to perform addition
(+), subtraction (-), multiplication (*) or division, depending on the
user's choice.

Two solutions can be proposed:

20/12/2024 4

AlgorithmCalculator;
Var x,y, res: real; op: character;
Begin
Read (x, y);
Read (op);
case op of
'+’: begin

res ← x+y;
Write (res);
End;

'-’: begin
res ← x-y;
Write (res);
End;

'*’: begin
res ← x*y;

Write (res);
End;

' /' : If y≠0 then
Begin
res ← x/y;
Write (res);
End;

else write ('indefinite’);
else : write ('unknown operation’);
end;
End.

Introduction : Illustrative example
Consider the following problem:

Write an algorithm that uses 2 numerical values to perform addition
(+), subtraction (-), multiplication (*) or division, depending on the
user's choice.

Two solutions can be proposed:

20/12/2024 5

Algorithm Calculator;
Var x,y, res: real; op: character;
procedure Addition (a, b: real,
var c: real);
Begin
c←a+b;
Write(c);
End;
procedureSubtraction (a, b: real,
var c: real);
Begin
c←a-b;
Write(c);
End;
procedure Multiplication (a, b:
real, var c: real);

Begin
c←a*b;
Write(c);
End;
procedure Division (a, b: real,
var c: real);
Begin
If b≠0 then

Begin
c ← a/b;
Write(c);
End

else write ('indefinite');
End;

Begin
Read (x, y);
Read (op);
case op in
'+': addition(x, y, res);
'-' : subtraction(x, y, res);
'*': multiplication(x, y, res);
' /' : division(x, y, res) ;
else: write ('unknown
operation’);
end;
End.

Introduction
▪ All the problems (and their algorithms) we have studied so far have been

implemented as a single processing block.

▪ As the problems become more complex, the size of the algorithm increases
accordingly, as does the difficulty of managing and understanding it.

▪ Addressing a practical problem requires a complex and time-consuming
approach. Solving this type of problem in a single phase can lead
▪ to failure

▪ or to a complicated and unreadable algorithm, which is quite difficult to write.

20/12/2024 6

Introduction
▪ Decomposing a complex problem into smaller, manageable parts is key to

solving it efficiently and reliably.

▪ The overall solution is then constructed by combining these individual
solutions.

▪ A sub-program can be either a procedure or a function.

20/12/2024 7

Definitions: Sub-programs
▪ A sub-program is the solution to a sub-problem.

▪ It is a block of instructions that enables a simple task to be carried out.

▪ A task is a well-defined action of varying complexity that is performed on one

or more objects at a given time.

▪ A sub-program is declared in the header and then called in the body of the

algorithm.

20/12/2024 8

Definitions: Sub-programs
Sub-programs have the following properties:

• A sub-program is designed to perform a well-defined and well-scoped
operation, ideally independent of the specific context of the calling algorithm

• Sub-programs can be nested.

• An algorithm calls a sub-program, transferring control of processing execution
to that sub-program for a limited period.
• The calling program is suspended during execution of the called subprogram.

• Control always returns to the caller when the called subprogram‘s execution
terminates.

• A sub-program can call another one.

20/12/2024 9

Definitions: Sub-programs
A sub-program provide several advantages:

• Each sub-program can be implemented and tested separately.

• This facilitates updating and error correction.

• If the same processing is required at several points in the program, the

corresponding sub-program can simply be called several times instead of

repeating the same block of instructions.

• This improves the clarity of algorithms and optimises the number of instructions.

20/12/2024 10

Definitions: Sub-programs
For example, a sub-program may :

• Swap the contents of the integers A and B.

• Divide the integer A by the integer B to obtain the result Q and the remainder R.

• Raise A to the power of B and store the result in C.

• Sort the sequence of N elements contained in an array T.

• …

20/12/2024 11

Definitions: Procedures
▪ A procedure is a sub-program that performs a simple task, identified by a

name and made up of a set of instructions.

▪ A procedure accepts arguments and returns results (zero, one or more) of any

type.

▪ A procedure can also be defined as a sub-program which solves a given

problem and which can have several results based on one or more given

arguments.

20/12/2024 12

Definitions: Procedures
• The declaration of a procedure defines a sub-program and associates it with

an identifier through which it will be called.

• It occurs in the algorithm's header and involves:

• Assigning a name to the procedure in the header.

• Defining its variable declaration part specific to it.

• Defining its processing part, which constitutes the body of the procedure.

• Syntactically, the declaration is done in the algorithm's header, as follows:

20/12/2024 13

Definitions: Procedures
• The declaration of a procedure defines a sub-program and associates it with

an identifier through which it will be called.

• It occurs in the algorithm's header and involves:

• Assigning a name to the procedure in the header.

• Defining its variable declaration part specific to it.

• Defining its processing part, which constitutes the body of the procedure.

• Syntactically, the declaration is done in the algorithm's header, as follows:

20/12/2024 14

Procedure procedure_name (parameter1, parameter2,…,parameterN);

‹Local_Object_Declarations›;

Begin

‹Instruction_Block›;

End ;

Formal parameters

The body of the procedure.

Definitions: Procedures
Notes :

➢ The parameters parameter1, parameter2, ..., parameterN are called Formal
Parameters. Each formal parameter is defined by an identifier, a type and a
transmission mode, as following :

transmission mode parameter_identifier : parameter_type

➢The name and type of the parameter is defined in the same way as for
variables.

➢The transmission mode specifies whether the parameter is an input or output.

20/12/2024 15

Procedure call
▪Once a subprogram has been declared, it can be used.

▪ To use a procedure (i.e. to execute its instructions), an algorithm calls (or

invokes) this procedure using the procedure call instruction with the real

parameters or arguments, also referred to as actual parameters.

procedure_name (parameter1, parameter2,…,parameterN);

20/12/2024 16

Procedure call
▪ Calling a parameterized procedure involves the following steps:

1. The address of the instruction following the call is saved as the return address.

2. Each formal parameter is matched with its corresponding actual parameter.

3. The statements of the called procedure are executed.

4. At the end of the called procedure:

a) All local objects are deleted,

b) The caller (sub-program/main algorithm) is resumed and execution continues
from the return address.

20/12/2024 17

Formal and actual parameters
▪ The parameters are used to allow the procedure to be executed several times,

with different values (arguments).
▪ For example, The procedure division(a, b, Q, R) can be called with different

arguments, such as division(7, 2, X, Y) or division(24, 5, Q, R) or division(n, m, x, y).

▪ Their declaration in the header of a procedure P describes the data (their
numbers, types and order) expected by P to be executed.

▪ Formal parameters are used to declare the procedure,

▪ Actual parameters are used to call the procedure.

20/12/2024 18

Formal and actual parameters

20/12/2024 19

Algorithm Power_ Calculation ;

Var uneVal, R : Real ;

nbPuissances: integer ;

Procedure Power (X : Real, N : integer, Var NB : real) ;

begin

...

End ;

…

begin

...

Power(uneVal, nbPuissances, R) ;

...

end.

Formal parameters of the procedure

Actual parameters of

the procedure

Procedure call

Application Exercises
1. Write an algorithm that input a positive non-zero integer N and displays whether it is

perfect or not.

2. Write an algorithm to enter a real number X and an integer n, and then calculate and

display Xn, regardless of the value of n.

3. Write an algorithm to enter an array of 10 characters, then reverse it, and finally

display it.

20/12/2024 20

Definitions : Functions
▪ Procedures accept input data (variables or constants) and may return results

(via parameters passed by reference).

▪ Functions are also sub-programs that:
▪accept parameters as input,

▪ return only a single scalar result.

▪ This result is returned via the function name.

20/12/2024 21

Definitions: Functions
▪ A function can be defined as a sub-program that accepts arguments

(parameters) and must return a single result (a value) of scalar type.

▪ Similar to a procedure, a function must be declared before it is used, which is
typically done in the algorithm's header, involving:
▪ Assigning a name to the function in the header.

▪ Defining its variable declaration part specific to it.

▪ Defining its processing part, which constitutes the body of the function.

20/12/2024 22

Definitions: Functions
▪ Syntactically, the declaration occurs in the algorithm's header, as

follows:

20/12/2024 23

Function ‹function_name› (‹ formal_parameters_list›) : ‹Result_Type› ;

‹Local_object_declarations›

begin

‹Instruction_Block›

end ;

Function name A function contains only input parameters

The output result is
returned by the
function itself

This part must contain at least one
return action for the function value:

‹function_name›←‹expression›.

Function call
▪ The function is called by its name, followed by a list of

parameters, as part of an expression to be calculated.
▪ Case 1 :
‹variable_name› ‹function_name› (parameter1, parameter2,…,parameterN);

▪ Case 2 :
If (‹function_name› (parameter1, parameter2,…,parameterN)=‹variable_name›) then….

▪ Case 3 :
Write (‹function_name› (parameter1, parameter2,…,parameterN));

20/12/2024 24

Note

Formal parameters and local objects are subject to

the same rules as procedures.

20/12/2024 25

Application Exercises
1. Write an algorithm that input a positive non-zero integer N and displays

whether it is perfect or not.

2. Write an algorithm to enter a real number X and an integer n, and then
calculate and display Xn, regardless of the value of n.

3. Write an algorithm to enter a positive non-zero integer N and calculate the
following sum:

1! + 2! + 3! +…+ N!

20/12/2024 26

Local and global variables
▪ Local object: An object declared within a sub-program (the

called) is only accessible inside that sub-program. It is said
to be local and not visible elsewhere in the program.

▪ Global object: An object declared in the main block (main
program or sub-program) is accessible to all nested sub-
programs. It is said to be global and visible throughout the
block where it is declared.

20/12/2024 27

Procedure P3 ;
Var k : integer ;

Procedure P2 ;
Var j : integer ;

Procedure P ;
Var i : integer ;
begin
…
end ;

…
end ;
…
end ;

Local and global variables
▪ A global variable and a local variable can have

the same name. In this case, locality masks

globality: the variable used in the sub-program

is always the local variable.

▪ An object B declared in a sub-program P is

global to any sub-program declared in P.

Algorithm GlobLoc_Var;
Var X, Y : Integer;

Procedure display;
Var X: Integer;
Begin
X  1;
Write(X, Y);
Y 100;
Write(X, Y);
End;

Begin
X  20;
Y 10;
display;
Write(X, Y);
END.

20/12/2024 28

Parameters transmission
▪ Formal variables are defined either by value or by reference

▪ A parameter is said to be "by value" when only its value is useful. It cannot be
modified directly in the procedure, but its value can be used to perform
calculations.

▪ In other words,
▪ The procedure receives a copy of the value of the actual parameter,

▪ The original value of the effective parameter is retained,

▪ Even if the procedure assigns a new value to the corresponding formal parameter

20/12/2024 29

Parameters transmission

▪ A parameter passed by variable (reference/ address) allows both the use and
modification of the value of the original variable in the called procedure.

▪ These variables are preceded by VAR keyword in the procedure header.

▪ The called procedure has access to the memory address of the original
variable. This means that changes made to the variable in the called
procedure also affect the original variable in the caller.

20/12/2024 30Msr Yamina Bordjiba

Example
Algorithm example1 ;

Var a: integer;

Procedure clear (x: integer) ;

Begin

x ← 0 ;

end ;

Begin

a ← 5 ;

clear (a) ;

write(a) ;

End.

Algorithm example2 ;

Var a: integer;

Procedure clear (Var x: integer) ;

Begin

x ← 0 ;

end ;

Begin

a ← 5 ;

clear (a) ;

write(a) ;

End.

20/12/2024 31

Parameter substitution rules
1. Actual/formal count match: The number of formal parameters must

correspond to the number of effective parameters when the function is

called.

2. Actual/formal parameter substitution: Each actual parameter is substituted

for the corresponding formal parameter, following the order of declaration.

3. Type matching: The type of each effective parameter must be compatible

with the type of the corresponding formal parameter.

20/12/2024 32

Parameter substitution rules
4. Pass-by value: A pass-by-value parameter creates a local variable whose

initial value is the current value of the effective parameter. Modifying this

variable within the procedure does not affect the value of the effective

parameter.

5. Pass by reference: The formal parameter and the actual parameter must be

variables. Modifying the formal parameter within the procedure also

modifies the value of the actual parameter.

6. Result parameters: A result parameter must be declared by reference to

receive the return value.

20/12/2024 33

	Diapositive 1 Sub-programs: Procedures and Functions
	Diapositive 2 Chapter 6 : Sub-programs
	Diapositive 3 Introduction : Illustrative example
	Diapositive 4 Introduction : Illustrative example
	Diapositive 5 Introduction : Illustrative example
	Diapositive 6 Introduction
	Diapositive 7 Introduction
	Diapositive 8 Definitions: Sub-programs
	Diapositive 9 Definitions: Sub-programs
	Diapositive 10 Definitions: Sub-programs
	Diapositive 11 Definitions: Sub-programs
	Diapositive 12 Definitions: Procedures
	Diapositive 13 Definitions: Procedures
	Diapositive 14 Definitions: Procedures
	Diapositive 15 Definitions: Procedures
	Diapositive 16 Procedure call
	Diapositive 17 Procedure call
	Diapositive 18 Formal and actual parameters
	Diapositive 19 Formal and actual parameters
	Diapositive 20 Application Exercises
	Diapositive 21 Definitions : Functions
	Diapositive 22 Definitions: Functions
	Diapositive 23 Definitions: Functions
	Diapositive 24 Function call
	Diapositive 25 Note
	Diapositive 26 Application Exercises
	Diapositive 27 Local and global variables
	Diapositive 28 Local and global variables
	Diapositive 29 Parameters transmission
	Diapositive 30 Parameters transmission
	Diapositive 31 Example
	Diapositive 32 Parameter substitution rules
	Diapositive 33 Parameter substitution rules

