Bellaouar Djamel University 08 Mai 1945 Guelma December 2020 Definitin and Examples Throughout this chapter \mathbb{K} denotes the field \mathbb{R} or \mathbb{C} , and $\mathcal{M}_n(\mathbb{K})$ denotes the vector space of n by n matrices over \mathbb{K} . #### Definition Let A be an $n \times n$ square matrix. When $Ax = \lambda x$ has a non-zero vector solution x, then - λ is called an **eigenvalue** of A. - x is called an **eigenvector** of A corresponding to λ . - The couple (λ, x) is called an **eigenpair** of A. **Notes:** (i) eigenvector must be non-zero. (ii) But, eigenvalue λ can be zero, can be non-zero. A vector $x \in E$ is an eigenvector of A if - x is non-zero, - there exists $\lambda \in \mathbb{K}$, $Ax = \lambda x$. Definitin and Examples The **eigenspace** of A corresponding to λ is the subspace: $$E_{\lambda} = \{ v \in \mathbb{K}^n ; Av = \lambda v \}.$$ Note that E_{λ} is a vector subspace of \mathbb{K}^n . This is the **kernel** of the matrix $A - \lambda I_n$. So E_{λ} consists of all solutions v of the equation $Av = \lambda v$. In other words, E_{λ} consists of all eigenvectors with eigenvalue λ , together with the zero vector. ### Example Let $A = I_2$. Then any non-zero vector v of \mathbb{R}^2 will be an eigenvector of A corresponding to eigenvalue $\lambda = 1$. #### Example Consider the matrix $$A = \left(\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array}\right).$$ Calculate the eigenvalues and eigenvectors of A. #### Solution. • First, we find the eigenvalues of A. We start with calculating the characteristic polynomial of A. From definition, we obtain $$p_{A}(x) = \begin{vmatrix} 2-x & 1 \\ 1 & 2-x \end{vmatrix} \xrightarrow{c_{1}} \text{ (the first column } c_{1} \text{ becomes } c_{1}+c_{2})$$ $$= \begin{vmatrix} (3-x) & 1 \\ (3-x) & 2-x \end{vmatrix} = (3-x) \begin{vmatrix} 1 & 1 \\ 1 & 2-x \end{vmatrix} = (3-x)(2-x-1)$$ $$= (3-x)(1-x).$$ Hence, $p_{A}\left(x\right)=\left(1-x\right)\left(3-x\right)$, and so the eigenvalues are $\lambda_{1}=1$ and $\lambda_{2}=3$. #### Definitin and Examples \bullet Second, we find the eigenvectors. By definition, the eigenspace E_{λ_1} is given by $$E_{\lambda_{1}} = \left\{ (x, y) \in \mathbb{R}^{2}; \begin{array}{l} x + 2y = x \\ 2x + y = y \end{array} \right\}$$ $$= \left\{ (x, y) \in \mathbb{R}^{2}; y = -x \right\}$$ $$= Vect \left\{ (1, -1) \right\}.$$ Thus, $v_1 = (1, -1)$. ullet Using the same manner, the eigenspace E_{λ_2} is given by $$E_{\lambda_{2}} = \left\{ (x, y) \in \mathbb{R}^{2}; \begin{array}{l} x + 2y = 3x \\ 2x + y = 3y \end{array} \right\}$$ $$= \left\{ (x, y) \in \mathbb{R}^{2}; y = x \right\}$$ $$= Vect \left\{ (1, 1) \right\}.$$ That is, $v_2 = (1, 1)$. #### Definition • The **geometric multiplicity** for a given eigenvalue λ , denoted by $G_m(\lambda)$, is the dimension of the eigenspace E_{λ} . That is, $$G_m(\lambda) = \dim E_{\lambda}$$. • The algebraic multiplicity for a given eigenvalue λ , denoted by $A_m\left(\lambda\right)$, is the number of times the eigenvalue is repeated. For example, if the characteristic polynomial is $(x-1)^2 \ (x-5)^3$ then for $\lambda=1$ the algebraic multiplicity is 2 and for $\lambda=5$ the algebraic multiplicity is 3. Note that the algebraic multiplicity is greater than or equal to the geometric multiplicity. That is, we always have $A_{m}\left(\lambda\right)\geq G_{m}\left(\lambda\right)$. **Examples.** Calculate eigenvalues and eigenvectors of the following matrices. Deduce the algebraic multiplicity and the geometric multiplicity of each eigenvalue of A. $$A = \left(\begin{array}{cc} 1 & 2 \\ 3 & 2 \end{array}\right).$$ **Ans.** We have $\lambda_1 = 4$, $v_1 = (2,3)$ and $\lambda_2 = -1$, $v_2 = (1,-1)$. $$A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}.$$ **Ans.** We have $\lambda_1=e^{i\theta}$, $v_1=(-i,1)$ and $\lambda_2=e^{-i\theta}$, $v_2=(i,1)$. $$A = \left(\begin{array}{cc} 1 & 2 \\ 0 & 5 \end{array}\right).$$ **Ans.** We have $\lambda_1 = 1$, $E_1 = Vect\{(1,0)\}$ and $\lambda_2 = 5$, $E_5 = Vect\{(1,2)\}$. $$A = \left(\begin{array}{cc} 2 & 6 \\ 0 & 2 \end{array}\right).$$ **Ans.** We have $\lambda=2$ (double), $E_{\lambda}=\textit{Vect}\left\{(1,0)\right\}$. $$A = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & -5 \end{array}\right).$$ **Ans.** We have $\lambda_1=1$, $E_1=Vect\left\{(1,0,0)\right\}$, $\lambda_2=2$, $E_2=Vect\left\{(2,1,0)\right\}$ and $\lambda_3=-5$, $E_{-5}=Vect\left\{(5,6,-14)\right\}$. Definitin and Examples $$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{array}\right).$$ **Ans.** We have $\lambda_1=1$, $E_{\lambda_1}=Vect\left\{(-1,1,1)\right\}$, $\lambda_2=2$ (the algebraic multiplicity of λ_2 is 2), $E_{\lambda_2}=Vect\left\{(0,1,0),(0,0,1)\right\}$. Also, the geometric multiplicity of λ_2 is 2. $$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$ **Ans.** We have $\lambda=0$ (triple eigenvalue), $E_{\lambda}=Vect\left\{ \left(1,0,0\right) ,\left(0,1,-1\right) \right\}$. The eigenspace corresponding to $\lambda=0$ is of dimension 2. $$A = \left(\begin{array}{ccc} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 3 & 2 \end{array}\right).$$ **Ans.** We have $\lambda = 2$ (triple eigenvalue), $E_{\lambda} = Vect\{(0,0,1)\}$. The eigenspace corresponding to $\lambda = 2$ is of dimension 1. Definitin and Examples $$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{array}\right).$$ **Ans.** We have $\lambda_1=0$ (simple eigenvalue), $E_{\lambda_1}=Vect\left\{(-1,1,0)\right\}$ and $\lambda_2=2$ (double eigenvalue), $E_{\lambda_2}=Vect\left\{(0,0,1),(1,1,0)\right\}$. The eigenspace corresponding to λ_1 is of dimension 1 and the eigenspace corresponding to $\lambda_2=2$ is of dimension 2. $$A = \left(\begin{array}{ccc} a & 2 & 3 \\ 0 & 2a & 8 \\ 0 & 0 & 3a \end{array}\right); a \in \mathbb{R}.$$ $\begin{aligned} &\textbf{Ans.} \ \ \text{We have} \ \lambda_1 = \textit{a} \ \text{and} \ \ \textit{E}_{\lambda_1} = \textit{Vect} \left\{ (1,0,0) \right\}, \ \lambda_2 = 2\textit{a} \ \text{and} \\ &\textit{E}_{\lambda_2} = \textit{Vect} \left\{ \left(\frac{2}{\textit{a}}, 1, 0 \right) \right\}, \ \lambda_3 = 3\textit{a} \ \text{and} \ \ \textit{E}_{\lambda_3} = \textit{Vect} \left\{ \left(\frac{1}{2\textit{a}^2} \left(3\textit{a} + 16 \right), \frac{8}{\textit{a}}, 1 \right) \right\}. \end{aligned}$ Definitin and Examples ## Corollary Let (λ, x) be an eigenpair of A. Then (λ^k, x) is an eigenpair of A^k . #### Proof. In fact, we see that $$Ax = \lambda x \Rightarrow A^2x = A(\lambda x) = \lambda Ax = \lambda^2 x.$$ Therefore, $$Ax = \lambda x \Rightarrow \forall k \geq 0 : A^k x = \lambda^k x.$$ The result is proved. Definitin and Examples ## Corollary Let A be an invertible matrix and let (λ, x) be an eigenpair of A with $\lambda \neq 0$. Then $$\left(\frac{1}{\lambda}, x\right)$$ is an eigenpair of A^{-1} . #### Proof. By definition, we have $$A^{-1}x = A^{-1}(1.x) = A^{-1}\left(\frac{\lambda}{\lambda}.x\right) = \frac{1}{\lambda}A^{-1}(\lambda x)$$ $$= \frac{1}{\lambda}A^{-1}(Ax) \quad \text{(since } Ax = \lambda x\text{)}$$ $$= \frac{1}{\lambda}x.$$ Thus, $A^{-1}x = \frac{1}{x}x$. The proof is finished. x 01. Calculate the eigenvalues and eigenvectors of the following matrix: $$A = \left(\begin{array}{rrr} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{array}\right).$$ **Ans.** $\lambda_1 = -2$, $\nu_1 = (1, 1, 0)$ and $\lambda_2 = 4$, $\nu_2 = (0, 1, 1)$. **Ex 02.** Let $P \in \mathbb{GL}_n(\mathbb{R})$ and let D be the following diagonal matrix: $$D=\left(egin{array}{cccc} \lambda_1 & & & & & \ & \lambda_2 & & & & \ & & \ddots & & & \ & & & \lambda_n \end{array} ight)$$ Calculate the eigenpairs of D, then deduce the eigenpairs of the matrix PDP^{-1} . **x 03.** Let $A \in \mathcal{M}_n(\mathbb{R})$ and $\alpha \in \mathbb{R}^*$. Prove that v is an eigenvector of $A \Rightarrow \alpha v$ is also an eigenvector of A. **2. 04.** Let $A \in \mathcal{M}_n(\mathbb{R})$ and λ_1, λ_2 be two eigenvalues of A with $\lambda_1 \neq \lambda_2$. Prove that $$E_{\lambda_1} \cap E_{\lambda_2} = \{0_{\mathbb{R}^n}\}$$. Recall that $E_{\lambda} = \{x \in \mathbb{R}^n ; Ax = \lambda x\}$.